| 注册
首页|期刊导航|华中科技大学学报(自然科学版)|基于MEFD-小波阈值降噪的舰船电场特征提取

基于MEFD-小波阈值降噪的舰船电场特征提取

胡育诚 王向军 汪石川

华中科技大学学报(自然科学版)2024,Vol.52Issue(4):88-93,6.
华中科技大学学报(自然科学版)2024,Vol.52Issue(4):88-93,6.DOI:10.13245/j.hust.240708

基于MEFD-小波阈值降噪的舰船电场特征提取

Feature extraction of ship shaft electric field based on MEFD-wavelet threshold denoising

胡育诚 1王向军 1汪石川1

作者信息

  • 1. 海军工程大学电气工程学院,湖北 武汉 430033
  • 折叠

摘要

Abstract

To realize feature extraction of ship shaft-rate electric field at low signal-noise ratio(SNR),a feature extraction method based on modified empirical Fourier decomposition(MEFD)-wavelet threshold was proposed.First,the MEFD which introduced the auto regressive and moving average model(ARMA)was adopted to separate signal from noise.Then,the L2-norm was calculated to screen out the efficient information components.Finally,the following components were processed by wavelet threshold denoising.To verify the feasibility of the proposed method,the simulation signatures and ship model measured signatures were conducted.Experimental results show that the proposed method is robust to the environmental noise.The index of orthogonality is 0.001 5,and similarity index is 0.450 3 in the extracting result of 2B distance in ship model experiment,which has better performance of feature extraction than other methods.The proposed method can detect the electric field signatures in a longer distance and lay a good foundation for the subsequent analysis and application of electric field characteristics.

关键词

轴频电场/改进经验傅里叶分解/小波阈值去噪/L2范数/特征提取

Key words

shaft-rate electric field/modified empirical Fourier decomposition/wavelet threshold denoising/L2 norm/feature extraction

分类

信息技术与安全科学

引用本文复制引用

胡育诚,王向军,汪石川..基于MEFD-小波阈值降噪的舰船电场特征提取[J].华中科技大学学报(自然科学版),2024,52(4):88-93,6.

基金项目

国家自然科学基金资助项目(41476153). (41476153)

华中科技大学学报(自然科学版)

OA北大核心CSTPCD

1671-4512

访问量0
|
下载量0
段落导航相关论文