|国家科技期刊平台
首页|期刊导航|计算机与现代化|基于Dilated ADU-Net的开放环境下的舌象分割算法

基于Dilated ADU-Net的开放环境下的舌象分割算法OACSTPCD

Tongue Image Segmentation Algorithm Based on Dilated ADU-Net in Open Environment

中文摘要英文摘要

舌象的精准分割是能否获得正确舌象诊断结果的重要前提.针对在自然光照条件下传统分割算法难以精确、稳定地分割舌体图像的难题,构建一种融合空洞卷积双注意力机制与密集连接机制的改进型U-Net舌象分割模型(Dilated Attention & Dense U-Net,Dilated ADU-Net).首先,基于U-Net网络的对称结构搭建主干网络;然后,下采样模块采用空洞型混合注意力模块,使网络聚焦于舌体特征,上采样模块采用密集连接机制融合多层特征信息;最后,采用开放环境下的舌象数据集对网络进行训练获得舌象分割模型.通过实验验证,和其他先进的分割方法相比,本文构建的舌象分割模型平均交并比(mean Intersection over Union,mIoU)达到96.73%,相似系数(Dice Similarity Coefficient,DSC)达到98.08%,具有更好的分割性能,可以实现复杂环境下舌象的精准分割.

Accurate tongue image segmentation is an important prerequisite for obtaining correct tongue diagnosis results.Aiming at the problem that traditional segmentation algorithms are difficult to accurately and stably segment tongue images under com-plex lighting conditions,an improved U-Net tongue image segmentation model(Dilated Attention&Dense U-Net,Dilated ADU-Net)combining dilated convolution dual attention mechanism and dense connection mechanism is constructed.Firstly,the backbone network is built based on the symmetric structure of U-Net network.Then,the downsampling module uses a cavity mixed attention module to make the network focus on tongue features,and the upsampling module uses a dense connection mechanism to fuse multi-layer feature information.Finally,the tongue image dataset in open environment is used to train the net-work to obtain the tongue image segmentation model.Experimental verification shows that compared with other advanced segmen-tation methods,the mean Intersection over Union(mIoU)of tongue image segmentation model constructed in this paper reaches 96.73%and the similarity coefficient Dice(DSC)reaches 98.08%,which has better segmentation performance and can realize accurate segmentation of tongue image in complex environments.

王鑫;辛国江;张杨;朱磊

湖南中医药大学信息科学与工程学院,湖南 长沙 410208

计算机与自动化

舌象分割深度学习注意力机制密集连接开放环境

tongue segmentationdeep learningattention mechanismdense connectionopen environment

《计算机与现代化》 2024 (004)

48-54 / 7

湖南省一流本科课程项目(2021-896);长沙市科技局项目(kq2202265);湖南省教育厅科研重点项目(22A0255);湖南省中医药科研计划重点课题(2020002)

10.3969/j.issn.1006-2475.2024.04.009

评论