基于CE-YOLOv5s的安全帽检测算法OACSTPCD
Helmet Detection Algorithm Based on CE-YOLOv5s
在环境复杂的施工现场,存在较多危险因素,保护工人的生命安全成为焦点.由于施工现场杂乱的环境和固定的信息采集点,使得安全帽佩戴检测存在漏检和错检问题.因此本文提出一种基于CE-YOLOv5s的安全帽检测算法.该算法将SE注意力机制与C3模块融合,将原网络中C3模块替换,给关键特征赋予更高的权重,抑制一般特征.将一种基于双向特征金字塔网络(BiFPN)的对象检测神经网络引入,同时进行向上和向下的特征融合,为每一个通道添加额外权重,更好地保留低分辨率图像下的细节信息;引入SIoU损失函数,提高边界框定位准确度,加快收敛速度.实验结果表明,改进后的网络模型在精确率、召回率、mAP@0.5和mAP@0.5:0.95上有明显提升,有效提高了安全帽的检测精度,并改善了对杂乱背景下的小目标和被遮挡目标的检测准确率.将本文算法应用于施工场地可以及时检测工人是否做好保护措施,更好地保护工人的生命安全.
In the complex environment of construction sites,there are many dangerous factors,so the protection of the safety of workers has become a focus.Due to the chaotic environment and fixed information collection points at construction sites,there are problems of missed and false detection in safety helmet-wearing detection.Therefore,this paper proposes a safety helmet de-tection algorithm based on CE-YOLOv5s.The algorithm combines the SE attention mechanism with the C3 module,replaces the C3 module in the original network,assigns a higher weight to key features,and suppresses general features.Meanwhile,an ob-ject detection neural network based on Bi-directional Feature Pyramid Network(BiFPN)is introduced,which performs both up-ward and downward feature fusion,adds additional weights to each channel,and better preserves detailed information under low-resolution images.The SIoU loss function is introduced to improve the accuracy of boundary box positioning and accelerate con-vergence speed.Experimental results show that the improved network model has significantly improved in precision,recall,mAP@0.5,and mAP@0.5:0.95,effectively improving the detection accuracy of safety helmets and improving the detection accu-racy of small targets and obscured targets in cluttered backgrounds.When applied to construction sites,it can timely detect whether workers have taken protective measures,and better protect their safety.
王志波;马晗;冯锦梁;刘国名
东华理工大学信息工程学院,江西 南昌 330013
计算机与自动化
安全帽检测YOLOv5注意力机制BiFPNSIoU
helmet detectionYOLOv5attentional mechanismBiFPNSIoU
《计算机与现代化》 2024 (004)
55-59,98 / 6
国家自然科学基金资助项目(41872243);江西省教育厅青年科技基金资助项目(GJJ150572);江西省教育厅科技计划一般项目(GJJ200721);江西省放射性地球科学与大数据技术工程实验室开放基金资助项目(JELRGBDT201709);江西省网络空间安全智能感知重点实验室开放基金资助项目(JKLCIP202211);江西省教育厅科技项目(GJJ200721)
评论