| 注册
首页|期刊导航|计算机与现代化|基于AHP-CNN的加密流量分类方法

基于AHP-CNN的加密流量分类方法

游嘉靖 何月顺 何璘琳 钟海龙

计算机与现代化Issue(4):83-87,5.
计算机与现代化Issue(4):83-87,5.DOI:10.3969/j.issn.1006-2475.2024.04.014

基于AHP-CNN的加密流量分类方法

Encryption Traffic Classification Method Based on AHP-CNN

游嘉靖 1何月顺 2何璘琳 2钟海龙1

作者信息

  • 1. 东华理工大学信息工程学院,江西 南昌 330013||江西省网络空间安全智能感知重点实验室,江西 南昌 330013
  • 2. 东华理工大学信息工程学院,江西 南昌 330013
  • 折叠

摘要

Abstract

To address the insufficient feature extraction of existing methods for encrypted traffic,this study proposes an en-crypted traffic classification method based on an Attention-based Hybrid Pooling Convolutional Neural Network(AHP-CNN).This method improves the pooling layers of Convolutional Neural Networks(CNNs)by combining average pooling and max pool-ing in a parallel manner,forming a dual-layer synchronized pooling pattern.This enables the capturing of both global and local features of network encrypted traffic.Furthermore,a self-attention module is incorporated into the model to enhance the extrac-tion of dependency relationships among encrypted traffic features,leading to more accurate classification.Experimental results demonstrate a significant improvement in the accuracy of encrypted traffic identification using the proposed model,with an F1 score exceeding 0.94.This research provides a more effective and precise approach for the classification of network encrypted traf-fic,contributing to advancements in research and applications in the field of network security.

关键词

深度学习/加密流量分类/卷积神经网络/混合池化/自注意力机制

Key words

deep learning/encrypted traffic classification/convolutional neural network/hybrid pooling/self-attention mechanism

分类

信息技术与安全科学

引用本文复制引用

游嘉靖,何月顺,何璘琳,钟海龙..基于AHP-CNN的加密流量分类方法[J].计算机与现代化,2024,(4):83-87,5.

基金项目

江西省重点研发项目(GJJ2200729) (GJJ2200729)

江西省网络空间安全智能感知重点实验室开放基金资助项目(JKLGIP202206) (JKLGIP202206)

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文