基于终身学习的直升机装配车间物料送达时间预测OACSTPCD
Lifelong Learning Based Material Delivery Time Prediction for Helicopter Assembly
关键物料的缺失已成为影响直升机装配生产计划执行的关键因素之一.准确的物料送达时间可指导装配生产计划的制定,一定程度上避免了由缺料导致的生产计划频繁变更.在直升机车间内部数据共享的基础上,一种基于终身学习的物料送达时间预测模型被提出.该模型由门控循环单元(Gated recurrent unit,GRU)网络层、ReLU激活层和全连接层构成,在实时预测时,可快速存储新的记忆且不遗忘旧的.为避免在实时预测中的精度大幅度降低,一种正则化的参数约束方式被提出来对模型参数进行调整.该方法的应用使得模型在目标域数据上的预测误差从0.032 9降低到0.013 4.使用25个物料清单数据进行模型验证.通过与L2正则化、EWC正则化等常用的正则化方法进行对比,验证了所建立的模型在实时预测上的准确性与实用性.
The lack of key materials has emerged as one of crucial factors affecting the execution of helicopter assembly production plans.Accurate material delivery time prediction can guide assembly production planning and reduce frequent changes caused by material shortages.A lifelong learning-based model for predicting delivery time of materials is proposed on the basis of internal data sharing within the helicopter factory.During real-time prediction,the model can store new memories quickly and not forget old ones,which is constructed by gated recurrent unit(GRU)network layer,ReLU activation layer,and fully connected layers.To prevent significant precision degradation in real-time prediction,a regularization parameter constraint method is proposed to adjust model parameters.By using this method,the root mean square error(RMSE)in the model's prediction on the target domain data is reduced from 0.032 9 to 0.013 4.The accuracy and applicability of the model for real-time prediction in helicopter assembly is validated by comparing it with methods such as L2 regularization and EWC regularization,using 25 material orders.
马立俊;阳祥贵;郭宇;童周强;黄少华;刘道元
南京航空航天大学机电学院,南京 210016,中国江西昌河航空工业有限公司,景德镇 333000,中国
计算机与自动化
直升机装配车间物料送达预测终身学习参数正则化
helicopter assemblymaterial delivery forecastlifelong learningparameter regularization
《南京航空航天大学学报(英文版)》 2024 (002)
147-157 / 11
评论