基于数字孪生的云网智能运维技术研究OACSTPCD
A Digital Twin Based Approach for Intelligent Operation and Maintenance of Cloud-network
云网融合的加速发展,既推动着通信网络数字化和智能化转型升级,也带来了云网运维复杂性不断提高的问题.尽管近年来通过各种智能化技术手段取得了一定进展,使网络管理控制变得更加敏捷和高效,但大规模云网设施仍然面临着运行维护过程中效率低、周期长和成本高等挑战.针对上述挑战,该文提出基于数字孪生的自适应探测、双重评估、优化调整三种智能运维的技术,旨在提高云网运维的效率并帮助预测网络异常.在自适应探测技术中,利用数据统计方法构建历史时序数据样本,通过算法选择适应的概率分布,预测故障发生的概率.双重评估技术中,通过对孪生系统和物理系统进行双重评估,验证故障原因并进行故障朔源.优化调整技术中,通过张量分解处理大数据,优化数据样本,并通过机器学习训练样本数据来优化调整智能运维模型.实验验证表明,该技术能够预测网络异常、快速定位故障,并优化调整系统,从而实现智能运维的目标.
Cloud-network integration is developing at an accelerated pace,which not only drives the digitalization and intelligence upgrade of communication networks,but also brings about increasing complexity in cloud-network operations and maintenance.Despite the progress made in recent years through various intelligent technologies,making network management and control more agile and efficient,large-scale cloud-network facilities still face challenges such as low efficiency,long cycles,and high costs in the operation and maintenance process.In response to these challenges,we propose three intelligent operation and maintenance techniques based on digital twins:adaptive detection,dual evaluation,and optimization adjustment,aiming to improve the efficiency of cloud-network operation and maintenance and assist in predicting network anomalies.In the adaptive detection technology,historical time series data samples are con-structed using statistical methods,and an appropriate probability distribution is selected through algorithms to predict the probability of failure occurrence.In the dual evaluation technology,both the twin system and the physical system are subject to dual evaluation to verify the causes of failures and conduct fault traceability.In the optimization adjustment technology,large-scale data is handled through tensor decomposition to optimize data samples,and machine learning is utilized to train the sample data and optimize the adjustment of intelligent operation and maintenance models.Experimental verification shows that the proposed technologies can predict network anomalies,rapidly locate faults,and optimize adjustment systems,thereby achieving the goal of intelligent operation and maintenance.
曾至诚;匡立伟
武汉邮电科学研究院,湖北 武汉 430073烽火通信科技股份有限公司,湖北 武汉 430074
计算机与自动化
云网融合智能运维数字孪生概率分布数据统计机器学习
cloud-network integrationintelligent operation and maintenancedigital twinprobability distributiondata statisticsmachine learning
《计算机技术与发展》 2024 (005)
24-29 / 6
国家重点研发计划基金资助项目(2020YFB1805600)
评论