| 注册
首页|期刊导航|计算机技术与发展|基于特征融合和损失优化的点云语义分割网络

基于特征融合和损失优化的点云语义分割网络

刘起源 路锦正 黄炳森

计算机技术与发展2024,Vol.34Issue(5):66-72,7.
计算机技术与发展2024,Vol.34Issue(5):66-72,7.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0042

基于特征融合和损失优化的点云语义分割网络

Point Cloud Semantic Segmentation Network Based on Feature Fusion and Loss Optimization

刘起源 1路锦正 2黄炳森1

作者信息

  • 1. 西南科技大学 计算机科学与技术学院,四川 绵阳 621010
  • 2. 西南科技大学 信息工程学院,四川 绵阳 621010
  • 折叠

摘要

Abstract

Aiming at the problem that most of the current methods only use single-scale features but ignore the multi-scale feature information with different receptive fields and cannot effectively deal with unbalanced category weights in point cloud datasets,a segmentation network(FFBL-Net)based on full-stage feature fusion(FSFF)and balanced loss(BL)is proposed.First,FSFF module promotes the complementation of shallow and deep semantic information by integrating learnable features of different coding stages with features of the current stage.The fused features are transferred to the encoding fusion module(EFM)and decoding fusion module(DFM),which realizes the cross-stage fusion of features.In addition,to solve the problem of unbalanced class distribution in the dataset,BL loss is introduced to adjust the gradient difference between categories.The experimental results show that the FFBL-Net on the large-scale point cloud dataset S3DIS has reached69.7%in terms of mean intersection over union(mIoU)and 89.9%in overall accuracy(OA),which is12.4%and 6.1%higher than that of the original PointNet++ respectively.

关键词

点云/语义分割/多尺度特征融合/损失优化/神经网络优化

Key words

point cloud/semantic segmentation/multi-level feature fusion/loss optimization/neural network optimization

分类

信息技术与安全科学

引用本文复制引用

刘起源,路锦正,黄炳森..基于特征融合和损失优化的点云语义分割网络[J].计算机技术与发展,2024,34(5):66-72,7.

基金项目

国家重点研发计划项目(2019YFB1705100) (2019YFB1705100)

四川省科技计划项目(2022ZHCG0001) (2022ZHCG0001)

黑龙江省重点研发计划项目(2022ZX01A16) (2022ZX01A16)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文