| 注册
首页|期刊导航|智慧农业(中英文)|用于小麦多生长阶段倒伏边界精准检测的分层交互特征金字塔网络

用于小麦多生长阶段倒伏边界精准检测的分层交互特征金字塔网络

庞春晖 陈鹏 夏懿 章军 王兵 邹岩 陈天娇 康辰瑞 梁栋

智慧农业(中英文)2024,Vol.6Issue(2):128-139,12.
智慧农业(中英文)2024,Vol.6Issue(2):128-139,12.DOI:10.12133/j.smartag.SA202310002

用于小麦多生长阶段倒伏边界精准检测的分层交互特征金字塔网络

HI-FPN:A Hierarchical Interactive Feature Pyramid Network for Accurate Wheat Lodging Localization Across Multiple Growth Periods

庞春晖 1陈鹏 1夏懿 2章军 2王兵 3邹岩 4陈天娇 4康辰瑞 5梁栋2

作者信息

  • 1. 安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心/信息材料与智能感知安徽省实验室/安徽大学互联网学院,安徽合肥 230601,中国||农业传感器与智能感知安徽省技术创新中心,中科合肥智慧农业协同创新研究院,安徽合肥 231131,中国||安徽鹏视智能科技有限公司,安徽合肥 230000,中国
  • 2. 安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心/信息材料与智能感知安徽省实验室/安徽大学互联网学院,安徽合肥 230601,中国
  • 3. 安徽财经大学 管理科学与工程学院,安徽蚌埠 233030,中国
  • 4. 中国科学院合肥物质科学院智能机械研究所,安徽合肥 230031,中国||中国科学技术大学,安徽合肥 230031,中国
  • 5. 中国科学院合肥物质科学院智能机械研究所,安徽合肥 230031,中国||西南科技大学,四川绵阳 621010,中国
  • 折叠

摘要

Abstract

[Objective]Wheat lodging is one of the key isuess threatening stable and high yields.Lodging detection technology based on deep learning generally limited to identifying lodging at a single growth stage of wheat,while lodging may occur at var-ious stages of the growth cycle.Moreover,the morphological characteristics of lodging vary significantly as the growth pe-riod progresses,posing a challenge to the feature capturing ability of deep learning models.The aim is exploring a deep learning-based method for detecting wheat lodging boundaries across multiple growth stages to achieve automatic and ac-curate monitoring of wheat lodging.[Methods]A model called Lodging2Former was proposed,which integrates the inno-vative hierarchical interactive feature pyramid network(HI-FPN)on top of the advanced segmentation model Mask2For-mer.The key focus of this network design lies in enhancing the fusion and interaction between feature maps at adjacent hi-erarchical levels,enabling the model to effectively integrate feature information at different scales.Building upon this,even in complex field backgrounds,the Lodging2Former model significantly enhances the recognition and capturing capa-bilities of wheat lodging features at multiple growth stages.[Results and Discussions]The Lodging2Former model dem-onstrated superiority in mean average precision(mAP)compared to several mainstream algorithms such as mask region-based convolutional neural network(Mask R-CNN),segmenting objects by locations(SOLOv2),and Mask2Former.When applied to the scenario of detecting lodging in mixed growth stage wheat,the model achieved mAP values of 79.5%,40.2%,and 43.4%at thresholds of 0.5,0.75,and 0.5 to 0.95,respectively.Compared to Mask2Former,the performance of the improved model was enhanced by 1.3%to 4.3%.Compared to SOLOv2,a growth of 9.9%to 30.7%in mAP was achieved;and compared to the classic Mask R-CNN,a significant improvement of 24.2%to 26.4%was obtained.Further-more,regardless of the IoU threshold standard,the Lodging2Former exhibited the best detection performance,demonstrat-ing good robustness and adaptability in the face of potential influencing factors such as field environment changes.[Con-clusions]The experimental results indicated that the proposed HI-FPN network could effectively utilize contextual seman-tics and detailed information in images.By extracting rich multi-scale features,it enabled the Lodging2Former model to more accurately detect lodging areas of wheat across different growth stages,confirming the potential and value of HI-FPN in detecting lodging in multi-growth-stage wheat.

关键词

无人机/深度学习/小麦倒伏检测/特征金字塔网络/Mask2Former

Key words

drone/deep learning/wheat lodging detection/feature pyramid network/Mask2Former

分类

信息技术与安全科学

引用本文复制引用

庞春晖,陈鹏,夏懿,章军,王兵,邹岩,陈天娇,康辰瑞,梁栋..用于小麦多生长阶段倒伏边界精准检测的分层交互特征金字塔网络[J].智慧农业(中英文),2024,6(2):128-139,12.

基金项目

National Natural Science Foundation of China Projects(62072002,62273001) (62072002,62273001)

Anhui Provincial Major Science and Technology Special Project(202003a06020016) (202003a06020016)

Supported by the Special Fund for Anhui Agriculture Research System(2021-2025) (2021-2025)

Excellent Scientific Re-search Innovation Team of Anhui Province Universities(2022AH010005) 国家自然科学基金项目(62072002 (2022AH010005)

62273001) ()

安徽省科技重大专项(202003a06020016) (202003a06020016)

安徽省现代农业产业技术体系建设专项资金(2021-2025) (2021-2025)

安徽省高校优秀科研创新团队(2022AH010005) (2022AH010005)

智慧农业(中英文)

OACSTPCD

2096-8094

访问量0
|
下载量0
段落导航相关论文