| 注册
首页|期刊导航|吉林大学学报(信息科学版)|信号干扰下的超宽带精确定位问题研究

信号干扰下的超宽带精确定位问题研究

张爱琳 刘辉 王小海 张秀伊 邱正中 吴春国

吉林大学学报(信息科学版)2024,Vol.42Issue(2):193-199,7.
吉林大学学报(信息科学版)2024,Vol.42Issue(2):193-199,7.

信号干扰下的超宽带精确定位问题研究

Research on Precise Positioning of Ultra Wide Band with Signal Interference

张爱琳 1刘辉 2王小海 2张秀伊 1邱正中 1吴春国1

作者信息

  • 1. 吉林大学符号计算与知识工程教育部重点实验室,长春 130012||吉林大学 计算机科学与技术学院,长春 130012
  • 2. 远光软件股份有限公司技术部,广东珠海 519085
  • 折叠

摘要

Abstract

In the field of indoor applications of UWB(Ultra Wide Band)positioning technology,it is important to establish an efficient and accurate 3D coordinate positioning system to overcome signal interference.Machine learning methods are used to investigate the problem of accurate positioning of indoor UWB signals under interference.Firstly,various statistical analysis models are used to clean up invalid or error measurements,then the a priori knowledge of TOF(Time Of Flight)algorithm is combined with neural network and XGBoost algorithm to build a neural XGB(Exterme Gradient Boosting)3D oriented system.The system can accurately predict the coordinate value of the target point by"normal data"and"abnormal data"(disturbed),the coordinates of four anchor points,and the final error is as low as 5.08 cm in two-dimensional plane and 8.03 cm in three-dimensional space.A neural network classification system is established to determine whether the data is disturbed or not,with an accuracy of 0.88.Finally,by combining the above systems,continuous and regular motion trajectories are obtained,which proves the effectiveness and robustness of the systems.

关键词

UWB精准定位/神经网络/XGBoost算法/逻辑回归

Key words

ultra wide band(UWB)precision positioning/neural network/XGBoost algorithm/logistic regression

分类

信息技术与安全科学

引用本文复制引用

张爱琳,刘辉,王小海,张秀伊,邱正中,吴春国..信号干扰下的超宽带精确定位问题研究[J].吉林大学学报(信息科学版),2024,42(2):193-199,7.

基金项目

吉林省科技发展计划基金资助项目(20230201083GX) (20230201083GX)

吉林大学学报(信息科学版)

OACSTPCD

1671-5896

访问量0
|
下载量0
段落导航相关论文