|国家科技期刊平台
首页|期刊导航|电测与仪表|基于改进ICP算法的变电站设备三维识别方法研究

基于改进ICP算法的变电站设备三维识别方法研究OA北大核心CSTPCD

Research on 3D recognition method of substation equipment based on improved ICP algorithm

中文摘要英文摘要

针对现有变电站设备三维识别方法在实际应用中存在的准确率差和效率低等问题,提出一种结合改进迭代最近点算法和Umeyama算法的变电站设备三维识别方法.通过随机采样一致性算法提取设备平面特征,通过Umeyama算法在模板库中找出平面特征最相似的几个设备,通过点云曲率特征提取设备点云关键点,通过改进迭代最近点算法对设备进行目标匹配.通过实验对其性能进行分析.结果表明,所提方法对智能变电站设备进行三维识别有较好的识别准确率和效率,识别准确率为99.50%,平均识别时间为2.07 s,有效地提高了三维识别技术的综合性能.

Aiming at the issues of low accuracy and poor efficiency in practical applications of existing methods for three-dimensional identification of substation equipment,a three-dimensional identification method for substation e-quipment is proposed,which combines the improved iterative nearest point algorithm and Umeyama algorithm.The plane features of device are extracted through random sampling consistency algorithm,the Umeyama algorithm is used to identify several devices with the most similar planar features in the template library,the point cloud key points of device are extracted through point cloud curvature features,and the target matching of devices is carried out by improving the iterative nearest point algorithm.The analysis of its performance is conducted through experi-ments.The results show that the proposed method has good recognition accuracy and efficiency for 3D recognition of intelligent substation equipment,with a recognition accuracy of 99.50%and an average recognition time of 2.07s,effectively improving the comprehensive performance of 3D recognition technology.

王庭松;惠小东;曾乔迪;许杨俊;陈煜敏

南方电网数字电网研究院有限公司,广州 510530

动力与电气工程

变电站设备三维识别方法迭代最近点算法Umeyama算法随机采样一致性算法

substation equipment3D recognition methoditerative closest point algorithmUmeyama algorithmrandom sampling consensus algorithm

《电测与仪表》 2024 (005)

65-70 / 6

南方电网公司科技项目(JY-00-01-ZC-21-003-TQ)

10.19753/j.issn1001-1390.2024.05.010

评论