| 注册
首页|期刊导航|电测与仪表|基于KPCA和XGBoost算法的非侵入式负荷辨识方法

基于KPCA和XGBoost算法的非侵入式负荷辨识方法

刘岩 王玉君 杨晓坤 李文文 郭磊

电测与仪表2024,Vol.61Issue(5):71-77,7.
电测与仪表2024,Vol.61Issue(5):71-77,7.DOI:10.19753/j.issn1001-1390.2024.05.011

基于KPCA和XGBoost算法的非侵入式负荷辨识方法

Non-intrusive load identification method based on KPCA and XGBoost algorithm

刘岩 1王玉君 1杨晓坤 1李文文 1郭磊1

作者信息

  • 1. 国网冀北电力有限公司营销服务中心(计量中心),北京 100045
  • 折叠

摘要

Abstract

In order to realize the function of non-intrusive load monitoring and improve the accuracy rate of load iden-tification,a load identification method based on machine learning is proposed in this paper.In the data of current waveform and harmonic characteristics of household appliances,Kernel principal components analysis(KPCA)is used to solve the problem of nonlinear feature extraction and dimension reduction,and extract feature information to the maximum extent.One dimensional convolution kernel is used to extract time series features and compress them into the XGBoost model to obtain load identification results.The algorithm is verified by the data collected in the la-boratory.The proposed algorithm has high accuracy rate in the identification of all kinds of electrical appliances.

关键词

非侵入式/负荷辨识/核主成分分析/卷积/XGBoost

Key words

non-intrusive/load identification/Kernel principal component analysis/convolution/XGBoost

分类

信息技术与安全科学

引用本文复制引用

刘岩,王玉君,杨晓坤,李文文,郭磊..基于KPCA和XGBoost算法的非侵入式负荷辨识方法[J].电测与仪表,2024,61(5):71-77,7.

基金项目

国家电网有限公司总部科技项目(52010119000R) (52010119000R)

电测与仪表

OA北大核心CSTPCD

1001-1390

访问量0
|
下载量0
段落导航相关论文