| 注册
首页|期刊导航|电测与仪表|改进BiLSTM在电力变压器故障诊断中的应用研究

改进BiLSTM在电力变压器故障诊断中的应用研究

张寿岩 史卫刚 杨利国 裴跃辉 杨超

电测与仪表2024,Vol.61Issue(5):160-165,6.
电测与仪表2024,Vol.61Issue(5):160-165,6.DOI:10.19753/j.issn1001-1390.2024.05.022

改进BiLSTM在电力变压器故障诊断中的应用研究

Research on the application of improved BiLSTM in power transformer fault diagnosis

张寿岩 1史卫刚 2杨利国 2裴跃辉 2杨超2

作者信息

  • 1. 河北西柏坡发电有限责任公司,石家庄 050000||东南大学电气工程学院,南京 210096
  • 2. 河北西柏坡发电有限责任公司,石家庄 050000
  • 折叠

摘要

Abstract

In response to the problems of low diagnostic accuracy and inconsistent characteristic parameter stand-ards in current power transformer fault diagnosis methods,based on the analysis of power transformer faults,a fault diagnosis method of power transformer based on bidirectional short-term memory(BiLSTM)network and improved whale optimization algorithm is proposed.The hybrid strategy(weight and convergence factor optimization,bat al-gorithm and Levy flight strategy)is introduced to optimize the whale optimization algorithm,and the optimized whale optimization algorithm is used to find the optimal parameters of the bidirectional short-term memory network to establish the power transformer fault diagnosis model.The superiority of this method is verified through comparative analysis between numerical examples and conventional methods.The results show that compared to conventional methods,the proposed fault diagnosis method has higher fault diagnosis accuracy and the best practical application effect,the fault diagnosis accuracy has been improved by 10.42% and 7.85%,providing a new approach for pow-er transformer fault diagnosis.

关键词

电力变压器/故障诊断/双向长短期记忆网络/鲸鱼优化算法/混合策略

Key words

power transformer/fault diagnosis/bidirectional long short-term memory/whale optimization algo-rithm/hybrid strategy

分类

信息技术与安全科学

引用本文复制引用

张寿岩,史卫刚,杨利国,裴跃辉,杨超..改进BiLSTM在电力变压器故障诊断中的应用研究[J].电测与仪表,2024,61(5):160-165,6.

基金项目

河北省自然科学基金资助项目(F2021502013) (F2021502013)

电测与仪表

OA北大核心CSTPCD

1001-1390

访问量0
|
下载量0
段落导航相关论文