经验小波变换和改进S变换结合的电能质量检测与识别方法OACSTPCD
Power Quality Detection and Recognition Method Based on Empirical Wavelet Transform and Improved S-transform
为分析不确定干扰因素影响下的实际电力网络电能质量问题,提出一种经验小波变换(EWT)和改进S变换相结合的电能质量检测与识别方法.该方法一方面利用EWT联合归一化直接正交(NDQ)算法和奇异值分解(SVD)算法准确提取调幅-调频分量的频率、幅值和时间参数,另一方面考虑到EWT算法在高噪声环境下瞬时幅值波动的问题,引入改进S变换提取高噪声干扰下的电能质量扰动时频信息,最后,基于EWT和改进S变换提取的扰动特征向量,利用基于改进粒子群优化算法(IPSO)优化支持向量机(SVM)的电能质量扰动识别分类器实现扰动类型的精确识别.仿真和实验表明所提方法在复合扰动识别分类时平均识别准确率为93.23%,且能够准确识别4种实测扰动信号.
In order to analyze the power quality problem of actual power network under the influence of uncertain interference factors,a power quality detection and recognition method combining empirical wavelet transform(EWT)and improved S-transform was proposed.On the one hand,the frequency,amplitude and time parameters of the AM-FM component were accurately extracted by using the EWT joint normalization direct orthogonal(NDQ)algorithm and singular value decomposition(SVD)algorithm.On the other hand,considering the instantaneous amplitude fluctuation of the EWT algorithm in the high noise environment,the improved S-transform was introduced to extract the time-frequency information of power quality disturbances under the high noise interference.Finally,based on the disturbance feature vectors extracted by EWT and improved S transform,the power quality disturbance recognition classifier optimized by the support vector machine(SVM)based on improved particle swarm optimization(IPSO)algorithm was used to accurately identify the disturbance types.Simulation and experiments show that the average recognition accuracy of the proposed method is 93.23%in the case of composite disturbance recognition and classification,and it can accurately identify four kinds of measured disturbance signals.
李宁;王茹月;朱龙辉
西安理工大学电气工程学院,陕西 西安 710048
动力与电气工程
电能质量扰动检测识别经验小波变换快速多分辨率S变换改进粒子群优化支持向量机
power qualitydisturbance detection and identificationempirical wavelet transform(EWT)fast multi-resolution S-transform(FMST)improved particle swarm optimization(IPSO)support vector machines(SVM)
《电气传动》 2024 (005)
26-33,72 / 9
国家自然科学基金(52177193);陕西省重点研发计划(2022GY-182);国家留学基金委国际清洁能源拔尖人才项目([2018]5046,[2019]157);西安市科技计划项目(22GXFW0078)
评论