基于递归径向基神经网络滑模的多功能柔性多状态开关控制方法OA
Multi-function flexible multi-state switch control method based on recursive radial basis function neural network sliding mode
近年来,新能源和电动汽车的渗透比例逐渐增高,给配电网的潮流优化和电能质量治理带来严峻挑战.针对分布式电源的随机性和间歇性问题,设计一种基于递归径向基神经网络(RRBFNN)滑模的多功能柔性多状态开关(FMS)控制方法,在实现功率交互和多端单相接地故障柔性消弧的同时,增强 FMS 的抗扰能力.首先考虑扰动的影响,设计一种改进 RRBFNN 滑模控制方法,以克服传统滑模控制固有的抖振现象和对系统精确数学模型的依赖,并减小并网暂态冲击;柔性消弧控制采用微积分型滑模面,理论推导出 0 轴电压控制律,提高故障电流抑制率;进一步通过李雅普诺夫定理证明所设计方法的稳定性和收敛性.最后,在Matlab/Simulink中搭建三端口FMS及其控制系统的仿真模型,通过对比仿真验证了所提策略的可行性和有效性.
In recent years,the increasing penetration of new energy and electric vehicles poses significant challenges to the current optimization and power quality management of distribution networks.In response to the problems of the stochastic and intermittent nature of distributed generation,a control method for a flexible multi-state switch(FMS)based on recursive radial basis function neural network(RRBFNN)sliding mode is proposed in this paper.The objective is to achieve power interaction,flexible arc suppression for multi-terminal single-phase ground faults,and enhance the disturbance rejection capabilities of the FMS.Beginning with the consideration of parameter perturbations,an improved RRBFNN sliding mode control method is introduced to overcome the inherent chattering in traditional sliding mode control,reduce reliance on the precise mathematical model of the system,and mitigate transient impacts during grid connection.A calculus-based sliding mode surface is employed for flexible arc suppression control,and the control law for the zero-sequence voltage is theoretically derived,enhancing fault current suppression rate.The stability and convergence of the proposed method are further demonstrated through Lyapunov's theorem.Finally,a simulation model of a three-port FMS with its control system is developed in Matlab/Simulink.The feasibility and effectiveness of the proposed strategy are verified through simulation comparisons.
廖江华;高伟;唐钧益;杨耿杰
福州大学电气工程与自动化学院,福州 350108
配电网柔性多状态开关(FMS)单相接地故障柔性消弧径向基神经网络(RBFNN)滑模控制
distribution networkflexible multi-state switch(FMS)single-phase ground faultflexible arc suppressionradial basis function neural network(RBFNN)sliding mode control
《电气技术》 2024 (005)
11-21 / 11
评论