| 注册
首页|期刊导航|电气技术|基于调制宽频模态分解和局部保持投影特征融合的光伏直流电能质量扰动识别

基于调制宽频模态分解和局部保持投影特征融合的光伏直流电能质量扰动识别

熊婕 朱宪宇 王娜 刘良江 李庆先

电气技术2024,Vol.25Issue(5):22-30,40,10.
电气技术2024,Vol.25Issue(5):22-30,40,10.

基于调制宽频模态分解和局部保持投影特征融合的光伏直流电能质量扰动识别

Identification of photovoltaic direct current power quality disturbance based on modulated broadband mode decomposition and local preserving projection feature fusion

熊婕 1朱宪宇 1王娜 2刘良江 1李庆先1

作者信息

  • 1. 湖南省计量检测研究院,长沙 410018
  • 2. 浙江方圆检测集团股份有限公司,杭州 310018
  • 折叠

摘要

Abstract

Nonlinear loads in photovoltaic(PV)direct current(DC)systems may introduce disturbances such as ripples,transients and noise in the DC power signal.Existing time-frequency analysis methods,such as variational mode decomposition,often lead to errors when decomposing PV DC power signals.This paper,building upon the foundation of broadband mode decomposition,employs modulated broadband mode decomposition(MBMD)with a modulation difference operator to denoise PV DC power signals,aiming to reduce decomposition errors.The proposed approach first utilizes MBMD for adaptive signal decomposition,incorporating a local preserving projection(LPP)algorithm for feature fusion.Finally,a back propagation artificial neural network model is employed for intelligent recognition of DC power quality.Simulation and experimental analysis demonstrate that the proposed method can accurately identify various types of disturbances in PV DC power.

关键词

调制宽频模态分解(MBMD)/复合多尺度模糊熵/局部保持投影(LPP)/BP人工神经网络/直流电能质量/扰动识别

Key words

modulated broadband mode decomposition(MBMD)/composite multiscale fuzzy entropy/local preserving projection(LPP)/back propagation artificial neural network/DC power quality/disturbance identification

引用本文复制引用

熊婕,朱宪宇,王娜,刘良江,李庆先..基于调制宽频模态分解和局部保持投影特征融合的光伏直流电能质量扰动识别[J].电气技术,2024,25(5):22-30,40,10.

基金项目

长沙市杰出创新青年培养计划项目(kq2206066) (kq2206066)

电气技术

1673-3800

访问量0
|
下载量0
段落导航相关论文