| 注册
首页|期刊导航|高技术通讯|基于样本动态权重的课程式半监督学习方法

基于样本动态权重的课程式半监督学习方法

朱徽 胡斌 宋怡宁 赵晓芳

高技术通讯2024,Vol.34Issue(4):342-355,14.
高技术通讯2024,Vol.34Issue(4):342-355,14.DOI:10.3772/j.issn.1002-0470.2024.04.002

基于样本动态权重的课程式半监督学习方法

Curriculum paradigm based on the dynamic weights of samples for semi-supervised learning

朱徽 1胡斌 2宋怡宁 3赵晓芳4

作者信息

  • 1. 中国科学院计算技术研究所 北京 100190||中国科学院大学 北京 100049
  • 2. 中国科学院计算技术研究所 北京 100190
  • 3. 中央军委国防动员部信息中心 北京 100034
  • 4. 中国科学院计算技术研究所 北京 100190||中科苏州智能计算技术研究院 苏州 215028
  • 折叠

摘要

Abstract

This work studies the difficulty of label propagation and serious noise interference in model training,which are due to the extreme lack of supervision signals in semi-supervised learning scenarios.Noise from pseudo-labeling and confirmation bias caused by low data utilization will lead to error accumulation along with the self-training process,thus forming irreversible deviation and damaging the performance.In this paper,a curriculum paradigm based on the dynamic weights of samples for semi-supervised learning is proposed,aiming at encouraging the model to utilize samples from easy to hard and gradually construct hyperplanes based on the non-discrete curriculum,so as to alleviate the generation of noise in the pseudo-labeling process and enhance the generalization ability of the mod-el.Specifically,from the intra-class perspective,prototypes of features are constructed by mixing pseudo-labels with high confidence,which can provide weak supervision signals.Then,the learning difficulties of samples are es-timated.From the inter-class perspective,label embedding is used to evaluate the semantic relevancy between cate-gories,and the discrimination between semantically related categories are weaken in the early stage of training.Comprehensive experiments and analyses are conducted on commonly-used semi-supervised learning benchmark datasets to demonstrate the effectiveness of this method.

关键词

半监督学习/特征表示向量/课程学习/特征原型/语义相关度

Key words

semi-supervised learning/feature representation vector/curriculum learning/prototype of fea-tures/semantic relevancy

引用本文复制引用

朱徽,胡斌,宋怡宁,赵晓芳..基于样本动态权重的课程式半监督学习方法[J].高技术通讯,2024,34(4):342-355,14.

基金项目

国家重点研发计划(2021YFF0703800)资助项目. (2021YFF0703800)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文