基于微状态的抑郁症静息态脑电信号分析OA北大核心CSTPCD
Analysis of resting EEG signals for depression based on microstates
抑郁症(MDD)患者存在认知功能障碍,但其瞬时神经异常活动尚未研究清楚,对此采用脑电(EEG)微状态方法对抑郁症患者的脑电数据进行研究.比较22名抑郁症患者和25名正常人的128导闭眼脑电数据微状态特征,进行差异性分析并探索与量表得分之间的相关性.结果发现,相对于健康对照组,抑郁症患者微状态C的出现次数和涵盖比更高,且与其他微状态之间的转换概率较高,而其微状态D的平均持续时间较低,且与微状态B之间的转换次数减少.此外,微状态C和微状态D与抑郁量表和焦虑量表均呈显著相关性,表明基于脑电微状态方法可以捕捉到抑郁症患者异常大脑动态特性,为抑郁症临床早期诊治提供客观参考.
Patients with major depressive disorder(MDD)have cognitive dysfunction,but current studies did not clearly investigate its temporal abnormal neurological activity.In response to this problem,this paper uses the electroen-cephalogram(EEG)microstate method to study the EEG data of patients with major depression.This paper com-pares the microstate characteristics of 128-channel EEG data from 22 patients with major depressive disorder and 25 healthy controls,performs statistical analysis and explores correlations with scale scores.Results show that com-pared with healthy controls,the occurrence and coverage of microstate C in major depressive disorder group are higher,and the transition probabilities between other microstates and C are also higher,while the average duration of microstate D is lower and the number of transitions between D and microstate B significantly decreases.In addi-tion,microstates C and microstates D are significantly correlated with the depression scale and anxiety scale.The results show that the EEG-based microstate method can capture the abnormal brain dynamic characteristics of de-pressed patients,and provide an objective reference for the early clinical diagnosis and treatment of depression.
陈学莹;齐晓英;史周晰;独盟盟
陕西科技大学数学与数据科学学院 西安 710021延安大学医学院 延安 716000
抑郁症(MDD)静息态脑电(EEG)脑电信号处理微状态聚类
major depressive disorder(MDD)resting-state electroencephalogram(EEG)EEG signal pro-cessingmicrostateclustering
《高技术通讯》 2024 (004)
379-385 / 7
国家自然科学基金(12102240)资助项目.
评论