| 注册
首页|期刊导航|光通信技术|光路传输质量智能预测技术

光路传输质量智能预测技术

谷志群 周宇航 张佳玮 纪越峰

光通信技术2024,Vol.48Issue(3):1-6,6.
光通信技术2024,Vol.48Issue(3):1-6,6.DOI:10.13921/j.cnki.issn1002-5561.2024.03.0001

光路传输质量智能预测技术

Intelligent prediction technology for optical path quality of transmission

谷志群 1周宇航 1张佳玮 1纪越峰1

作者信息

  • 1. 北京邮电大学信息光子学与光通信全国重点实验室,北京 100876
  • 折叠

摘要

Abstract

Addressing the challenge of traditional mathematical model-based quality of transmission(QoT)prediction methods struggling to simultaneously meet the demands of high precision and low computational complexity,this paper introduces three intelligent QoT prediction techniques for single optical paths,multiple optical paths,and cross-topology optical paths.These tech-niques rely on machine learning models to achieve accurate end-to-end optical path QoT predictions and effectively tackle the following challenges:firstly,how to select appropriate machine learning models and input features amidst the diversity of physi-cal layer parameters.Secondly,how to effectively capture the intricate relationships among optical paths.Thirdly,how to train and continuously optimize network models with limited samples.Finally,the article offers a glimpse into the future development directions of optical path QoT prediction technologies.

关键词

光网络/光路传输质量/机器学习

Key words

optical networks/optical path quality of transmission/machine learning

分类

信息技术与安全科学

引用本文复制引用

谷志群,周宇航,张佳玮,纪越峰..光路传输质量智能预测技术[J].光通信技术,2024,48(3):1-6,6.

基金项目

国家自然科学基金项目(62101058、U21B2005)资助 (62101058、U21B2005)

河北省省级科技计划项目(22567624H)资助. (22567624H)

光通信技术

OA北大核心

1002-5561

访问量0
|
下载量0
段落导航相关论文