| 注册
首页|期刊导航|光通信技术|基于图神经网络的SDON性能预测模型

基于图神经网络的SDON性能预测模型

王星宇 张慧 蔡安亮 沈建华

光通信技术2024,Vol.48Issue(3):38-44,7.
光通信技术2024,Vol.48Issue(3):38-44,7.DOI:10.13921/j.cnki.issn1002-5561.2024.03.008

基于图神经网络的SDON性能预测模型

SDON performance prediction model based on graph neural network

王星宇 1张慧 2蔡安亮 1沈建华1

作者信息

  • 1. 南京邮电大学通信与信息工程学院,南京 210003
  • 2. 深圳赛柏特通信技术有限公司,广东深圳 518000
  • 折叠

摘要

Abstract

Network performance prediction is the key to achieving efficient network management of software defined optical net-works(SDON),but there is an urgent need for a network performance prediction model that can accurately predict key indicators at limited cost.A graph neural network-based SDON performance prediction model is proposed,which combines BiGRU and Self-Attention mechanisms to learn the complex relationships between network topology,routing,and traffic matrices,accurately estimating the packet delay,jitter,and packet loss rate of the source/destination in the network.This model can be applied to net-works that have not been encountered during training.The experimental results show that in different traffic model tests,the pro-posed model has a significant improvement in average absolute percentage error(MAPE)performance compared to the baseline model.

关键词

图神经网络/网络性能预测/软件定义光网络/自注意力机制/光通信

Key words

graph neural networks/network performance prediction/software-defined optical network/Self-Attention mecha-nisms/optical communication

分类

信息技术与安全科学

引用本文复制引用

王星宇,张慧,蔡安亮,沈建华..基于图神经网络的SDON性能预测模型[J].光通信技术,2024,48(3):38-44,7.

基金项目

国家自然科学青年基金项目(62301284)资助 (62301284)

南京邮电大学企业委托研发重点课题(KH0020322072)资助. (KH0020322072)

光通信技术

OA北大核心

1002-5561

访问量0
|
下载量0
段落导航相关论文