基于图神经网络的SDON性能预测模型OA北大核心
SDON performance prediction model based on graph neural network
网络性能预测是实现软件定义光网络(SDON)高效网络管理的关键,但目前亟需一种能够以较低成本准确预测关键指标的网络性能预测模型.提出一种基于图神经网络的SDON性能预测模型,该模型将BiGRU和Self-Attention机制相结合,能够学习网络拓扑、路由和流量矩阵之间的复杂关系,从而准确地估计网络中源/目的地的分组延迟、抖动以及丢包率,并且可以应用于训练中未遇到的网络.实验结果表明,在不同流量模型测试中,所提模型相较于基线模型的平均绝对百分比误差(MAPE)性能有明显提升.
Network performance prediction is the key to achieving efficient network management of software defined optical net-works(SDON),but there is an urgent need for a network performance prediction model that can accurately predict key indicators at limited cost.A graph neural network-based SDON performance prediction model is proposed,which combines BiGRU and Self-Attention mechanisms to learn the complex relationships between network topology,routing,and traffic matrices,accurately estimating the packet delay,jitter,and packet loss rate of the source/destination in the network.This model can be applied to net-works that have not been encountered during training.The experimental results show that in different traffic model tests,the pro-posed model has a significant improvement in average absolute percentage error(MAPE)performance compared to the baseline model.
王星宇;张慧;蔡安亮;沈建华
南京邮电大学通信与信息工程学院,南京 210003深圳赛柏特通信技术有限公司,广东深圳 518000
电子信息工程
图神经网络网络性能预测软件定义光网络自注意力机制光通信
graph neural networksnetwork performance predictionsoftware-defined optical networkSelf-Attention mecha-nismsoptical communication
《光通信技术》 2024 (003)
38-44 / 7
国家自然科学青年基金项目(62301284)资助;南京邮电大学企业委托研发重点课题(KH0020322072)资助.
评论