基于扩散Transformer网络的激光雷达数据补全方法OA北大核心
Lidar data completion method based on diffusion Transformer network
由于设备故障和环境干扰等因素,激光雷达在数据采集过程中常常存在数据缺失或噪声干扰的问题,这些问题严重影响后续数据的解析和应用.为了解决这一难题,引入了扩散Transformer网络(DT-Net),将DT-Net用作生成器,与自注意单元判别器相结合.此外,还设计了一种扩散机制用于激光雷达数据补全.实验结果表明:相较于PoinTr方法,所提出的方法在激光雷达数据补全任务方面取得了显著的改进,平均Chamfer 距离(CD)值降低了约 1.79%,F-Score值提升了约1.88%.
Due to factors such as equipment failure and environmental interference,lidar often encounters problems of missing data or noise interference during the data collection process,which seriously affect the subsequent analysis and application of the data.To solve this problem,the diffusion Transformer network(DT-Net)is introduced and used as a generator in combination with a Self-Attention unit discriminator.Additionally,a diffusion mechanism is designed for lidar data completion.The experi-mental results show that compared to the PoinTr method,the proposed approach achieves significant improvements in lidar data completion tasks,with an average Chamfer distance(CD)value reduced by approximately 1.79%and an F-Score value increased by approximately 1.88%.
李伟松;刘佳;张坤
河北科技大学信息科学与工程学院,石家庄 050018
电子信息工程
扩散机制数据补全激光雷达实际应用
diffusion mechanismdata completionlaser radarpractical application
《光通信技术》 2024 (003)
52-56 / 5
河北省高等学校学科技术研究项目(No.ZD2020176)资助;河北省技术创新引导计划项目(No.21470302D)资助.
评论