| 注册
首页|期刊导航|电网技术|基于时空注意力卷积模型的超短期风电功率预测

基于时空注意力卷积模型的超短期风电功率预测

吕云龙 胡琴 熊俊杰 龙敦华

电网技术2024,Vol.48Issue(5):2064-2073,中插44-中插46,13.
电网技术2024,Vol.48Issue(5):2064-2073,中插44-中插46,13.DOI:10.13335/j.1000-3673.pst.2023.0899

基于时空注意力卷积模型的超短期风电功率预测

Ultra-short-term Wind Power Prediction Based on Spatiotemporal Attention Convolution Model

吕云龙 1胡琴 1熊俊杰 2龙敦华1

作者信息

  • 1. 重庆大学雪峰山能源装备安全国家野外科学观测研究站,重庆市沙坪坝区 400044
  • 2. 国网江西省电力有限公司电力科学研究院,江西省 南昌市 330096
  • 折叠

摘要

Abstract

With the continuous improvement of wind power utilization,accurate prediction of the wind power output power is of great significance for the scheduling and stable operating of the power systems.However,the randomness and volatility of the wind power generation easily affects the accuracy of the power prediction results.In this paper a wind power prediction based on the spatiotemporal correlation is proposed,consisting of a spatiotemporal attention module and a spatiotemporal convolution module.First,the spatial attention layer and the temporal attention layer are used to aggregate and extract the spatiotemporal correlations between different wind turbines.Second,the spatial features and the temporal evolution patterns among the wind power data are effectively captured by the spatial convolution layer and the temporal convolution layer.Finally,the prediction method is experimentally validated using the operational data from two actual wind farms in China.The results indicate that compared to the traditional prediction methods,the fusion of the spatiotemporal attention and the spatiotemporal convolution enables the proposed prediction to have a higher accuracy and a better stability.

关键词

风电功率预测/时空相关性/图神经网络/时空注意力模块/时空卷积模块

Key words

wind power forecast/spatiotemporal correlation/graph neural network/spatiotemporal attention module/spatiotemporal convolution module

分类

信息技术与安全科学

引用本文复制引用

吕云龙,胡琴,熊俊杰,龙敦华..基于时空注意力卷积模型的超短期风电功率预测[J].电网技术,2024,48(5):2064-2073,中插44-中插46,13.

基金项目

国网江西省电力有限公司科技项目(521820220007).Project Supported by State Grid Jiangxi Electric Power Co.,Ltd.(521820220007). (521820220007)

电网技术

OA北大核心CSTPCD

1000-3673

访问量0
|
下载量0
段落导航相关论文