|国家科技期刊平台
首页|期刊导航|哈尔滨工程大学学报|融合点线特征的视觉惯性同时定位及建图

融合点线特征的视觉惯性同时定位及建图OA北大核心CSTPCD

Visual-inertia simultaneous localization and mapping based on point-and-line features

中文摘要英文摘要

为了解决移动机器人在低纹理场景中的定位精度较低且容易跟踪丢失问题,本文设计了一种点线特征提取和匹配策略,并以此构建了视觉惯性同时定位和建图系统.提出线特征提取和匹配算法,通过改良线特征提取算法的隐藏参数,提高了线特征提取的精度.利用点线特征不同匹配筛选框架减少误匹配的数目,得出了可以应用于视觉惯性同时定位和建图系统的线特征提取匹配算法.在现有视觉惯性框架中引入提出的线特征约束,搭建了能在未知低纹理环境下鲁棒运行的视觉惯性同时定位及建图系统.研究表明:在真实环境中的移动机器人定位实验证明了该系统的精度和鲁棒性优于现有的视觉惯性框架,其室内定位精度提高了 24.2%,走廊定位精度提高了 8%,对于移动机器人在低纹理场景下的高精度定位具有较高价值.

The accuracy of mobile robot localization in low-texture scenes is often compromised,leading to frequent tracking loss.To solve this problem,this study proposes an innovative point-line feature extraction and matching strategy incorporated into the visual-inertial simultaneous localization and mapping(SLAM)system.The approach begins by proposing a line feature extraction and matching algorithm.Refining the hidden parameters of the line feature extraction algorithm improves accuracy.Subsequently,diverse matching screening frameworks for point-line features are employed to reduce mismatches.This approach results in a line feature extraction matching algorithm suitable for the visual-inertial SLAM system.By integrating the proposed line feature constraint into the current vis-ual-inertial framework,this study establishes a robust visual-inertial SLAM system suitable for operation in unknown low-texture environments.Experimental validation with a mobile robot in a real-world setting demonstrates superior accuracy and robustness of the proposed strategy compared with those of the existing visual-inertial framework.The system enhances indoor localization accuracy by 24.2%and corridor localization accuracy by 8%,providing sub-stantial value for high-precision mobile robot localization in low-texture scenes.

姚建均;李英朝;吴杨;唐瑞卓;于新达;闫宇坤

哈尔滨工程大学 机电工程学院,黑龙江 哈尔滨 150001维沃移动通信有限公司,广东 东莞 523850

计算机与自动化

同时定位及建图点线特征视觉惯性里程计单目视觉移动机器人感知特征匹配低纹理回环检测

simultaneous localization and mappingpoint-and-line featuresvisual-inertial odometermonocular vi-sionmobile robot perceptionfeature matchinglow textureloop detection

《哈尔滨工程大学学报》 2024 (004)

771-778 / 8

黑龙江省自然科学基金项目(E2018019).

10.11990/jheu.202209031

评论