| 注册
首页|期刊导航|电网技术|基于加权宽度学习的异常用电辨识研究

基于加权宽度学习的异常用电辨识研究

姚影 陆俊 肖琦 龚钢军 徐志强 辛培哲

电网技术2024,Vol.48Issue(5):2095-2102,中插48-中插55,16.
电网技术2024,Vol.48Issue(5):2095-2102,中插48-中插55,16.DOI:10.13335/j.1000-3673.pst.2023.0479

基于加权宽度学习的异常用电辨识研究

Research on Abnormal Electricity Identification Based on Weighted Broad Learning System

姚影 1陆俊 1肖琦 1龚钢军 1徐志强 2辛培哲3

作者信息

  • 1. 北京市能源电力信息安全工程技术研究中心(华北电力大学),北京市 昌平区 102206
  • 2. 国网湖南省电力公司经济技术研究院,湖南省长沙市 410004
  • 3. 国家电网北京经济技术研究院,北京市 昌平区 102211
  • 折叠

摘要

Abstract

Aiming at the problem of unbalanced relationship between abnormal electricity consumption and normal electricity consumption sample categories,time-consuming training and lack of scalability of existing models,an abnormal electricity consumption identification model based on Weighted Broad Learning System(WBLS)was proposed.Firstly,considering the class imbalance relationship between samples,the sample weight is used in the objective function to constrain the contribution of each class to the model,and the sample weight is personalized according to the distribution of samples,and the generalized inverse WBLS identification model is established efficiently by ridge regression.Secondly,based on the newly added electricity consumption sample data,the model is updated and reconstructed by the incremental learning algorithm.The experimental results show that the model improves the identification accuracy of abnormal electricity samples,and can quickly update and expand the old model with the increase of electricity samples.

关键词

异常用电/加权宽度学习/类不平衡/增量学习

Key words

abnormal power consumption/weighted broad learning system/class imbalance/incremental learning

分类

信息技术与安全科学

引用本文复制引用

姚影,陆俊,肖琦,龚钢军,徐志强,辛培哲..基于加权宽度学习的异常用电辨识研究[J].电网技术,2024,48(5):2095-2102,中插48-中插55,16.

基金项目

国家电网有限公司总部管理科技项目(5700-2-2252219 A-1-1-ZN).Project Supported by the Headquarters of State Grid Corporation of China Manages Scientific and Technological Projects(5700-2-2252219 A-1-1-ZN). (5700-2-2252219 A-1-1-ZN)

电网技术

OA北大核心CSTPCD

1000-3673

访问量0
|
下载量0
段落导航相关论文