| 注册
首页|期刊导航|哈尔滨工程大学学报|脑血管数字减影血管造影高分辨率分割网络设计

脑血管数字减影血管造影高分辨率分割网络设计

崔颖 付瑞 朱佳 高山 陈立伟 张广

哈尔滨工程大学学报2024,Vol.45Issue(4):786-793,8.
哈尔滨工程大学学报2024,Vol.45Issue(4):786-793,8.DOI:10.11990/jheu.202206003

脑血管数字减影血管造影高分辨率分割网络设计

Design of a high-resolution segmentation network for digital subtraction angiography of cerebral vessels

崔颖 1付瑞 1朱佳 1高山 1陈立伟 1张广2

作者信息

  • 1. 哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
  • 2. 哈尔滨医科大学附属第一医院 神经外科,黑龙江哈尔滨 150001
  • 折叠

摘要

Abstract

To solve the problem of low accuracy of existing convolutional neural networks for cerebral vascular DSA image segmentation,an improved network based on U-Net(IC-Net)is proposed.By fusing the use of inception and channel attention modules,rich vascular feature information is extracted using multiple sensory domains and feature information is filtered.A new 7×7 convolutional layer is added to reduce the amount of data generated dur-ing training by compressing the feature layer resolution.Compared with the U-Net and common U-Net improved models,the improved model's intersection over union,accuracy,F1-score,and area under the curve increase by 1.82%,0.014%,1.19%,and 0.73%on average,respectively.The results verify that the IC-Net model remark-ably improves the model's capabilities to detect weak vessels and vessel ends in cerebrovascular digital subtraction angiography images and distinguish artifactual noise.The model provides a strong reference for physicians to identi-fy lesions within cerebrovascular vessels.

关键词

图像分割/特征提取/脑血管/数字减影血管造影/U-Net/Inception模块/通道注意力/降维处理

Key words

image segmentation/feature extraction/cerebrovascular/digital subtraction angiography/U-Net/in-ception module/channel attention/dimension reduction treatment

分类

信息技术与安全科学

引用本文复制引用

崔颖,付瑞,朱佳,高山,陈立伟,张广..脑血管数字减影血管造影高分辨率分割网络设计[J].哈尔滨工程大学学报,2024,45(4):786-793,8.

基金项目

国家自然科学基金项目(81901190). (81901190)

哈尔滨工程大学学报

OA北大核心CSTPCD

1006-7043

访问量0
|
下载量0
段落导航相关论文