| 注册
首页|期刊导航|计算机工程与应用|电力巡检中改进YOLOv5s的缺陷检测算法研究

电力巡检中改进YOLOv5s的缺陷检测算法研究

王磊 郝涌汀 潘明然 赵慕东 张永鑫 张茗宇

计算机工程与应用2024,Vol.60Issue(10):256-265,10.
计算机工程与应用2024,Vol.60Issue(10):256-265,10.DOI:10.3778/j.issn.1002-8331.2309-0468

电力巡检中改进YOLOv5s的缺陷检测算法研究

Improved Defect Detection Algorithm in Power Inspection Based on YOLOv5s

王磊 1郝涌汀 1潘明然 2赵慕东 1张永鑫 1张茗宇1

作者信息

  • 1. 沈阳理工大学 机械工程学院,沈阳 110159
  • 2. 辽沈工业集团有限公司 研发中心,沈阳 110045
  • 折叠

摘要

Abstract

A modified defect detection algorithm based on YOLOv5s is proposed to address the issue of low detection accuracy for critical components during power line inspections using drones.The algorithm introduces a convolutional neural network attention module(CBAM)in the backbone network to enhance the efficiency of extracting important information from feature maps.The original PANet feature fusion framework in YOLOv5s is replaced with a bidirectional feature pyramid network(BiFPN),which incorporates learnable weights to map different feature contributions,thereby increasing the importance of significant feature mappings.Additionally,a context convolution module is added on top of the spatial pyramid pooling(SPP)module to improve feature representation capabilities.Experimental verification is conducted by using aerial photography datasets,demonstrating that the improved algorithm achieves an mAP of 95.6%,accuracy of 93.7%,and recall rate of 93.8%.To further validate the algorithm's performance on embedded systems,the model is accelerated and deployed on the Jetson Xavier NX platform,the average runtime for a single-frame image is 24.6 ms with a detection accuracy of 90.8%and a recall rate of 90.5%.This capability allows for precise object recogni-tion on Jetson Xavier NX devices.The improved model has enhanced detection accuracy,demonstrating the effectiveness of the algorithm and meeting real-time detection requirements for power line inspections.

关键词

电力巡检/目标检测/注意力机制/特征融合/YOLO

Key words

electric power inspection/object detection/attention mechanism/features fusion/YOLO

分类

信息技术与安全科学

引用本文复制引用

王磊,郝涌汀,潘明然,赵慕东,张永鑫,张茗宇..电力巡检中改进YOLOv5s的缺陷检测算法研究[J].计算机工程与应用,2024,60(10):256-265,10.

基金项目

辽宁省教育厅基本科研项目(LJKFZ20220186) (LJKFZ20220186)

沈阳市中青年科技创新人才项目(RC200537). (RC200537)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文