|国家科技期刊平台
首页|期刊导航|火炸药学报|高频空化冲击作用下HTPB固体推进剂的细观损伤机制

高频空化冲击作用下HTPB固体推进剂的细观损伤机制OA北大核心CSTPCD

Mesoscale Damage Mechanism of HTPB Solid Propellants by High Frequency Cavitation Impact

中文摘要英文摘要

为研究高频空化冲击作用下的HTPB复合固体推进剂热力耦合行为及细观损伤机制,提出一种考虑颗粒/基体间实际界面相的三维全级配HTPB固体推进剂细观模型构筑方法,区别于在颗粒/基体界面间嵌入虚拟内聚力界面单元的传统细观模型,进一步建立起空化微射流冲击作用下的固体推进剂热力耦合细观力学模型,分析了细观尺度上的固体推进剂破碎规律、损伤行为、局部应力应变和温度分布情况.结果表明,空化微射流作用在AP颗粒上后,导致AP颗粒直接破裂,随着冲击程度的增加,AP颗粒与HTPB基体间界面层受到冲击作用而破裂;固体推进剂在空化微射流冲击后的最大应力值为34.27MPa、应变值为1.314;应力波传递过程由于受到AP颗粒、Al颗粒和界面相的阻碍作用而发生传递路径的改变;空化冲击固体推进剂过程的最大温度值由于断裂能、内能和摩擦能的逐渐累积而呈现出逐步增长的变化特征,且最大温度值为24.59 ℃,在距离空化微射流较远位置的固体推进剂由于传热系数较低而无明显温升.

In order to study the thermal-mechanical coupling behaviors and mesoscale damage mechanism of HTPB solid propel-lants under high frequency cavitation impact,a three-dimensional full gradaed HTPB solid propellant mesoscale modeling was proposed considering the actual interface between particle and matrix.Different from the traditional meso-mechanical model in which virtual cohesive force interface element is embedded between particle/matrix interface,the thermo-mechanical coupling meso-mechanical model of solid propellant under the impact of cavitation microjet is further established.The breaking mecha-nism,damage mechanism,local stress strain and temperature distribution of solid propellant were analyzed.The results show that the AP particles break directly when the cavitating microjet acts on the AP particles.With the increase of impact degree,the interface layer between AP particles and HTPB matrix is fractured by impact.The maximum stress and strain values of solid propellant after cavitation microjet impact are 34.27MPa and 1.314,respectively.The stress wave transmission path change due to the obstruction of AP particles,Al particles,and interface phases.The maximum temperature value of the cavitation impact solid propellant process shows a gradually increasing trend due to the gradual accumulation of fracture energy,internal energy and friction energy.The maximum temperature value is 24.59 ℃.The solid propellant at a position far away from the cavitation microjet has no obvious temperature rise due to the low heat transfer coefficient.

赵蒙;刘博;周文君;张有智;慕晓刚;王煊军

火箭军工程大学智剑实验室,陕西西安 710025

武器工业

材料力学HTPB复合固体推进剂空化冲击绿色回收全级配细观损伤界面相FDP算法

material mechanicsHTPB composite solid propellantscavitation impactgreen recyclingfull gradationme-soscale damageinterface phaseForce-Directed Placement algorithm

《火炸药学报》 2024 (004)

354-364 / 11

火箭军工程大学青年基金(No.2021QN-B014);国防科技基础加强计划资助

10.14077/j.issn.1007-7812.202312011

评论