| 注册
首页|期刊导航|宁夏电力|基于小波变换和长短期记忆神经网络的电力负荷预测

基于小波变换和长短期记忆神经网络的电力负荷预测

叶梁劲 廖晓辉 李建树 刘思佳

宁夏电力Issue(2):33-39,45,8.
宁夏电力Issue(2):33-39,45,8.DOI:10.3969/j.issn.1672-3643.2024.02.006

基于小波变换和长短期记忆神经网络的电力负荷预测

Power load forecasting based on wavelet transform and long short-term memory neural network

叶梁劲 1廖晓辉 1李建树 2刘思佳1

作者信息

  • 1. 郑州大学电气与信息工程学院,河南 郑州 450001
  • 2. 国网河南省电力公司郑州供电公司,河南 郑州 450001
  • 折叠

摘要

Abstract

The power system requires an immediate balance between the generated power and the electricity load,which is characterized by non-linearity,time variability,and uncertainty.To address this issue,this paper proposes a combined forecasting model that integrates wavelet transform(WT)and long short-term memory(LSTM)neural net-works,considering the impact of weather and date types for short-term power load forecasting.Initially,the wavelet trans-form is employed for feature extraction signal denoising to reduce data volatility.Then,the preprocessed data is trained using an LSTM network,and the output results undergo sequence reconstruction for the final load forecast.Finally,the data of WT-LSTM combined forcasting model is seperately compared with that of the BP neural network and LSTM model.The results show that the WT-LSTM neural network combined prediction model has the superior predictive per-formance,significantly enhancing forecasting precision.

关键词

小波变换/长短期记忆神经网络/负荷预测/电力系统/预测效果

Key words

wavelet transform/long short-term memory neural network/load forecasting/power system/forecasting precision

分类

信息技术与安全科学

引用本文复制引用

叶梁劲,廖晓辉,李建树,刘思佳..基于小波变换和长短期记忆神经网络的电力负荷预测[J].宁夏电力,2024,(2):33-39,45,8.

基金项目

河南省自然科学基金项目(232300421198) (232300421198)

宁夏电力

1672-3643

访问量0
|
下载量0
段落导航相关论文