| 注册
首页|期刊导航|南京医科大学学报(自然科学版)|基于可解释机器学习构建脑卒中患者日常生活自理能力风险预测模型

基于可解释机器学习构建脑卒中患者日常生活自理能力风险预测模型

叶倩 杨云 徐文韬 刘玲玲

南京医科大学学报(自然科学版)2024,Vol.44Issue(5):672-680,9.
南京医科大学学报(自然科学版)2024,Vol.44Issue(5):672-680,9.DOI:10.7655/NYDXBNSN240009

基于可解释机器学习构建脑卒中患者日常生活自理能力风险预测模型

Constructing a prediction model for stroke patients'activities of daily living risk based on interpretable machine learning

叶倩 1杨云 2徐文韬 3刘玲玲4

作者信息

  • 1. 南京医科大学附属第一医院康复医学中心,江苏 南京 210029||南京中医药大学针灸推拿学院,江苏 南京 210029
  • 2. 南京医科大学附属第一医院康复医学中心,江苏 南京 210029||南京师范大学心理学院,江苏 南京 210023
  • 3. 南京中医药大学针灸推拿学院,江苏 南京 210029
  • 4. 南京医科大学附属第一医院康复医学中心,江苏 南京 210029
  • 折叠

摘要

Abstract

Objective:To utilize machine learning algorithms to predict risk factors affecting the activities of daily living(ADL)of stroke patients,providing references for their ADL management decisions.Methods:A retrospective analysis was conducted on 423 stroke patients treated at the Rehabilitation Medicine Center of the First Affiliated Hospital of Nanjing Medical University from January 2015 to February 2019.Patients were categorized into a better ADL group(BI ≥ 60 points)and a poorer ADL group(BI<60 points)based on the Barthel Index(BI)assessment scale,and data preprocessing was performed.Feature variables were selected using colinearity diagnostics and the least absolute shrinkage and selection operator(LASSO).Logistic regression(LR),support vector machine(SVM),random forest(RF),extreme gradient boosting(XGBoost),and K nearest neighbor(KNN)were selected as the five machine learning algorithms for predictive modeling.Afterten-fold cross-validation,the models were comprehensively evalutated using receiver operating characteristic(ROC)curves,area under aerue(AUC),precision recall(PR)curves,area under the precision recall curve(PRAUC),accuracy,sensitivity,and specificity.The Shapley additive interpretation(SHAP)was introduced to interpret the optimal machine learning model.Results:After LASSO regression analysis,16 feature variables were identified for constructing the machine learning model.The RF model demonstrated superior performance with the highest AUC(0.74),PRAUC(0.64),accuracy(0.97),sensitivity(0.75),and specificity(0.97).Interpretive analysis of the SHAP model revealed that among the top 5 features contributing to ADL,Brunnstrom stage(lower limb)exerted the most significant effect,followed by Brunnstrom stage(upper limb),D-dimer,serum albumin level,and age.Conclusion:The RF model emerged as the most effective in predicting ADL in stroke patient,providing valuable references for ADL management decisions in stroke patients.

关键词

机器学习/预测模型/脑卒中/日常生活自理能力

Key words

machine learning/predictive modeling/stroke/activities of daily living

分类

临床医学

引用本文复制引用

叶倩,杨云,徐文韬,刘玲玲..基于可解释机器学习构建脑卒中患者日常生活自理能力风险预测模型[J].南京医科大学学报(自然科学版),2024,44(5):672-680,9.

基金项目

国家自然科学基金(82104993) (82104993)

南京医科大学学报(自然科学版)

OA北大核心CSTPCD

1007-4368

访问量0
|
下载量0
段落导航相关论文