| 注册
首页|期刊导航|起重运输机械|基于机器视觉的紧密排列目标检测研究

基于机器视觉的紧密排列目标检测研究

许习军 张明远 孟文俊 武成柱 张涛

起重运输机械Issue(9):20-28,9.
起重运输机械Issue(9):20-28,9.

基于机器视觉的紧密排列目标检测研究

许习军 1张明远 2孟文俊 2武成柱 1张涛1

作者信息

  • 1. 太原福莱瑞达物流设备科技有限公司 太原 030000||高效线边物流系统及其装备省技术创新中心 太原 030000
  • 2. 太原科技大学 太原 030000||高效线边物流系统及其装备省技术创新中心 太原 030000||智能物流装备山西省重点实验室 太原 030000
  • 折叠

摘要

Abstract

Machine vision technology is an important support for industrial robot vision guidance system.With the continuous rise of production efficiency,Many irregular and closely arranged goods are often transported together on the assembly line.Under such circumstances,the traditional target detection algorithm based on template matching has poor positioning performance and recognition accuracy.To solve this problem,YOLOv8 algorithm based on deep learning was used to detect closely arranged objects,and related data sets were established based on the characteristics of these objects,and the performance in structured environment was verified by experiments.The experimental results show that the model trained by YOLOv8 algorithm has a fast convergence speed and the average accuracy is stable at about 0.95,and in many real environments,the average accuracy of the model for identifying disorderly queue targets can reach 91.64%,which provides an effective solution for positioning and identifying closely arranged items on the assembly line.

关键词

机器视觉/深度学习/目标检测/YOLOv8

Key words

machine vision/deep learning/target detection/YOLOv8

分类

信息技术与安全科学

引用本文复制引用

许习军,张明远,孟文俊,武成柱,张涛..基于机器视觉的紧密排列目标检测研究[J].起重运输机械,2024,(9):20-28,9.

基金项目

太原市双百攻关行动揭榜挂帅项目 ()

起重运输机械

1001-0785

访问量0
|
下载量0
段落导航相关论文