集成GRU的约束柔性动作-评价器住宅虚拟电厂全分布式调度策略OACSTPCDEI
GRU-integrated constrained soft actor-critic learning enabled fully distributed scheduling strategy for residential virtual power plant
本文提出了一种新型的集成门控循环单元(GRU)和深度强化学习(DRL)的住宅虚拟电厂(RVPP)调度方法.在所提方法中,GRU集成的DRL算法引导RVPP有效参与日前和实时市场,降低终端用户的购电成本和消费风险.为了避免在训练过程中违反约束条件,引入拉格朗日松弛技术,将约束马尔可夫决策过程(CMDP)转化为无约束优化问题,从而无需整定惩罚系数并保证严格满足约束条件.此外,为了增强基于约束柔性动作-评价器 (CSAC) 的 RVPP 调度方法的可扩展性,设计了一种完全分布式调度架构,以实现 RDER 的即插即用.所构建RVPP场景中的算例分析验证了所提出的方法在提高RDER对电价的响应能力;平衡电网供需和确保用户舒适度方面的有效性.
In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort.
邓孝云;陈永东;范东川;刘友波;马超
住宅虚拟电厂住宅分布式资源约束柔性动作-评价器完全分布式调度策略
Residential virtual power plantResidential distributed energy resourceConstrained soft actor-criticFully distributed scheduling strategy
《全球能源互联网(英文)》 2024 (002)
117-129 / 13
This study was supported by the Sichuan Science and Technology Program(grant number 2022YFG0123).
评论