|国家科技期刊平台
首页|期刊导航|全球能源互联网(英文)|基于模态分解的广义负荷图像化预测方法

基于模态分解的广义负荷图像化预测方法OACSTPCDEI

Generalized load graphical forecasting method based on modal decomposition

中文摘要英文摘要

在“双碳”背景下,电力负荷受多重因素耦合影响,从传统的“纯负荷”逐渐演变为具有“负荷”+“电源”双重特性的广义负荷.广义负荷由于其复杂性和不确定性,传统的时间序列预测方法将不再适用.本文从图像处理的角度出发,提出了一种基于模态分解的广义负荷图像化短期预测方法.首先,通过XGBooste;GBDT;RF算法的结果对比,将数据集进行归一化处理和特征筛选.然后利用模态分解将广义负荷数据分解为3组模态,将其作为R;G;B三通道的像素值生成三基色(RGB)图像,并进行图像多样化处理,利用优化后的DenseNet神经网络进行训练和预测.最后,选取基础负荷和风光发电量数据,利用DBSCAN聚类算法得出不同风光渗透率下广义负荷场景的特征曲线,根据所提图像化预测方法进行预测,通过与传统的时间序列预测方法的对比,验证了广义负荷图像化预测方法的可行性.

In a"low-carbon"context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional"pure load"to the generalized load with the dual characteristics of"load + power supply."Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.

吴丽珍;常培鑫;陈伟;裴婷婷

负荷预测广义负荷图像化处理DenseNet模态分解

Load forecastingGeneralized loadImage processingDenseNetModal decomposition

《全球能源互联网(英文)》 2024 (002)

166-178 / 13

This study was supported by the National Natural Science Foundation of China(Grant No.62063016).

10.1016/j.gloei.2024.04.005

评论