基于CEEMD和GRU的电力变压器材料价格预测OACSTPCDEI
Price prediction of power transformer materials based on CEEMD and GRU
中国经济的快速增长推动了电网的扩张.电力变压器是电网工程中的关键设备,其价格变化对造价控制有着重大影响.然而,电力变压器材料价格表现为非平稳和非线性的序列.因此,电网工程的设备购置费估算困难,阻碍了电力工程的正常建设.为了更准确地预测电力变压器材料价格,本研究提出了一种基于互补集合经验模态分解(CEEMD)和门控循环单元(GRU)网络的方法.首先,CEEMD 将价格序列分解为多个固有模态函数(IMF).根据每个 IMF 的样本熵,对多个 IMF 进行聚类,以获得多个聚合序列.然后,对样本熵较大的聚合序列进行经验小波变换(EWT),再利用 GRU 模型对分解得到的多个子序列进行预测;对样本熵较小的聚合序列利用 GRU 模型直接进行预测.最后,我们使用了电力变压器材料价格的真实历史数据来验证所提出的方法.结果表明所提方法在两个数据集上都很有效,平均绝对百分比误差(MAPE)分别小于1%和3%,对未来电力变压器材料价格预测领域的研究具有重要的参考价值.
The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the prices of power transformer materials manifest as nonsmooth and nonlinear sequences.Hence,estimating the acquisition costs of power grid projects is difficult,hindering the normal operation of power engineering construction.To more accurately predict the price of power transformer materials,this study proposes a method based on complementary ensemble empirical mode decomposition(CEEMD)and gated recurrent unit(GRU)network.First,the CEEMD decomposed the price series into multiple intrinsic mode functions(IMFs).Multiple IMFs were clustered to obtain several aggregated sequences based on the sample entropy of each IMF.Then,an empirical wavelet transform(EWT)was applied to the aggregation sequence with a large sample entropy,and the multiple subsequences obtained from the decomposition were predicted by the GRU model.The GRU model was used to directly predict the aggregation sequences with a small sample entropy.In this study,we used authentic historical pricing data for power transformer materials to validate the proposed approach.The empirical findings demonstrated the efficacy of our method across both datasets,with mean absolute percentage errors(MAPEs)of less than 1%and 3%.This approach holds a significant reference value for future research in the field of power transformer material price prediction.
黄琰;胡玉峰;吴良峥;文上勇;万正东
电力变压器材料价格预测互补集合经验模态分解门控循环单元经验小波变换
Power transformer materialPrice predictionComplementary ensemble empirical mode decompositionGated recurrent unitEmpirical wavelet transform
《全球能源互联网(英文)》 2024 (002)
217-227 / 11
This work was supported by China Southern Power Grid Science and Technology Innovation Research Project(000000KK52220052).
评论