|国家科技期刊平台
首页|期刊导航|可再生能源|基于太阳能和双有机朗肯循环的液态空气储能系统特性研究

基于太阳能和双有机朗肯循环的液态空气储能系统特性研究OA北大核心CSTPCD

Performance analysis on liquid air energy storage system based on solar energy and dual Organic Rankine Cycle

中文摘要英文摘要

为了解决传统太阳能蓄热式液态空气储能系统(LAES-S)余热利用不完全的问题,进一步提高系统的往返效率,文章在LAES-S系统基础上,构建了一个耦合太阳能蓄热和双有机朗肯循环的液态空气储能系统(LAES-S-O),并建立了耦合系统的热力学模型,分析了关键参数对系统性能的影响.结果表明:典型工况下,子系统ORC1 和ORC2 的净输出功分别为 1 296 kW和 6 695.83 kW;新系统的往返效率可达 117.63%,火用效率为38.97%,能量效率为28.88%,与参考系统相比,分别提升了 12.58%,2.35%,1.21%.此外,该系统还为用户提供了温度为364.15 K的生活热水,实现了热电联产功效.对关键参数的敏感性分析显示,当液化压力(末级压缩机出口压力)从 15 MPa升高到 18 MPa,液化温度(节流阀入口空气温度)从 93.15 K上升到 113.15 K时,空气液化率、往返效率、火用效率随液化压力的增大而降低,液化压力和温度的提高不利于系统性能的提升;但当排气压力从5.3 MPa升高至 7.7 MPa时,往返效率、火用效率均随之升高.研究结果可为液态空气耦合太阳能系统提供一定的理论支持.

In order to solve the problem of incomplete utilization of waste heat in traditional solar thermal storage liquid air energy storage systems(LAES-S)and further improve the round-trip efficiency of the system,a liquid air energy storage system(LAES-S-O)coupled with solar thermal storage and a dual Organic Rankine Cycle on the basis of the LAES-S system is developed.The thermodynamic model of the coupled system is established,and the influence of key parameters on system performance is analyzed.The results show that the net output power of subsystems ORC1 and ORC2 is 1 296 kW and 6 695.83 kW under typical operating conditions;the round-trip efficiency of the new system can reach 117.63%;the exergy efficiency is 38.97%;and the energy efficiency is 28.88%,which are 12.58%,2.35%,and 1.21%higher than those of the reference system,respectively.In addition,the system provides domestic hot water at a temperature of 364.15 K to the users,achieving cogeneration efficacy.Sensitivity analysis of key parameters shows that when the liquefaction pressure(compressor outlet pressure)increases from 15 MPa to 18 MPa and the liquefaction temperature(throttle inlet air temperature)rises from 93.15 K to 113.15 K,the air liquefaction rate,round-trip efficiency,and exergy efficiency decrease with the increase of liquefaction pressure,and the increase of liquefaction pressure and temperature is not conducive to the system performance;however,when the exhaust pressure increases from 5.3 MPa to 7.7 MPa,the round-trip efficiency and the exergy efficiency increases.The research results can provide some theoretical support for the liquid-air-coupled solar system.

史科锐;莫春兰;党玉荣;方颖聪;张子杨;李作顺

广西大学 机械工程学院,广西 南宁 530004

能源与动力

太阳能液态空气储能有机朗肯循环余热利用敏感性分析

solar energyliquid air energy storageOrganic Rankine Cyclewaste heat utilizationsensitivity analysis

《可再生能源》 2024 (005)

601-611 / 11

广西创新驱动发展专项(桂科AA19254010).

评论