基于分数阶矩和分片Wasserstein距离的鲁棒风险度量优化模型OA北大核心CHSSCDCSSCICSTPCD
Robust Risk Measurement Optimization Model Based on Fractional Moment and Piecewise Wasserstein Metric
鲁棒风险度量优化是一类随机风险分析度量的重要问题,其对不确定分布信息的捕捉需依赖不完善的假设和估计,分布尾部的反映直接影响分布预测的精准性,尾部模型误差在实际风险管理决策中会造成严重的后果.文章以一种对尾部模型误差具有稳健性的方式建立鲁棒风险度量优化模型.在构造模型不确定集时,提出基于Wasserstein距离的分布估计方法,克服了已有参数分布无法反映真实分布尾部行为的限制.鉴于分数阶矩对分布尾部信息具有精准刻画的能力,在解析分布估计的基础上,建立分数阶矩约束的鲁棒风险度量模型.为优化Wasserstein距离忽略分布几何结构造成的尾部模型误差,基于纤维丛理论思想,提出分片Was-serstein距离解析约束的分片鲁棒风险度量模型.最后,通过规范数据进行仿真分析,数值实验结果显示,该模型能够精准量化突发性极端损失风险.
Robust risk measurement optimization is a class of important issue in the stochastic risk measurement.The cap-ture of uncertain distribution information depends on imperfect assumptions and estimates,and the reflection of the tail of distribu-tion directly affects the accuracy of distribution prediction.The error of the tail model can cause serious consequences in actual risk management decision-making.This paper constructs a robust risk measurement optimization model in a way that is robust to the error of the tail model.In the case of constructing the model uncertainty set,a distribution estimation method based on Wasser-stein metric is proposed to overcome the limitation that the existing parameter distributions cannot reflect the real distribution tail behavior.In view of the ability of fractional moment to accurately describe the tail information of distribution,a robust risk mea-surement model with fractional moment constraints is established based on the analysis of distribution estimation.Furthermore,a piecewise robust risk measurement model with piecewise Wasserstein metric constraints is constructed based on fiber bundles the-ory to optimize the tail model error caused by the fact that Wasserstein metric ignores the distribution geometry.Finally,the simu-lation analysis of normative data is performed,and the results show that the model can accurately quantify the risk of sudden ex-treme loss.
李伟梅;高雷阜
辽宁工程技术大学工商管理学院,辽宁 葫芦岛 125105||辽宁工程技术大学运筹与优化研究院,辽宁 阜新 123000辽宁工程技术大学运筹与优化研究院,辽宁 阜新 123000
数学
鲁棒风险度量分数阶矩概率分布估计分片Wasserstein距离
robust risk measurementfractional momentprobability distribution estimationpiecewise Wasserstein metric
《统计与决策》 2024 (009)
55-60 / 6
国家自然科学基金资助项目(12201275);教育部人文社会科学研究基金项目(21YJCZH204);辽宁省社会科学规划基金项目(L22BGL028)
评论