采用Karhunen-Loève分解计算堤坝沉降区间场OA北大核心CSTPCD
Interval field analysis of dam settlement using Karhunen-Loève decomposition
大坝的建造以及运行过程中受多种内外部多因素耦合作用,其沉降分析是复杂、非线性问题,采用非概率区间方法构造大坝沉降区间有利于定量描述多源不确定信息,使计算更加吻合实际情况.本文将基于Karhunen-Loève分解的区间场有限元方法由线弹性模型扩展至邓肯-张模型中,通过引入平方指数形式的空间依赖函数描述切线模量的空间变异性.采用以 Legendre 多项式为基函数的 Galerkin 方法计算模量变化区域的特征值与特征函数.在区间有限元的框架下,编写非线性区间本构模型Abaqus用户子程序UMAT,结合Python脚本计算大坝沉降针对于模量参数变化的响应区间,并与传统顶点集区间方法进行对比.工程实例分析表明,所提方法可以有效计算大坝沉降区间,所得到的沉降区间能涵盖顶点集区间,且有限元计算次数由指数级减少为多项式级.本文方法可以进一步扩展至大坝长期变形区间计算问题.
The settlement analysis of a dam faces a complicated nonlinear problem due to the coupling of internal and external factors during its construction and operation.The dam settlement interval established using the non-probability method helps the quantitative description of multi-source uncertain information,making the calculation more agreeable with the real case.This paper describes a new method of combining the Duncan-Chang model calculations of dam settlement with the Karhunen-Loeve decomposition,through extending the interval field finite element method from the linear elastic model to a nonlinear model.In this method,the variability of tangential modulus is described using a spatial dependence function in the form of square exponents;the Galerkin method with the Legendre polynomial basic functions is used to calculate the eigenvalues and eigenfunctions of variable modulus characteristics.We have coded an Abaqus user subroutine UMAT to implement the interval Duncan-Chang model,and adopted a Python script to calculate the response interval of dam settlement stress to the variations in modulus parameters,with the settlement interval so calculated being compared with the traditional vertex method.Analysis of engineering cases shows that our new method can effectively calculate the dam's settlement interval that covers the vertex interval,and that the cost of finite element calculations is reduced from exponential to polynomial.The method can be further extended to the analysis of long-term dam deformation.
周婷;介玉新;张延亿
清华大学 水圈科学与水利工程全国重点实验室,北京 100084||清华大学 水利部水圈科学重点实验室,北京 100084||清华大学 水利水电工程系,北京 100084中国水利水电科学研究院,北京 100044
水利科学
大坝沉降非确定性分析区间场有限元Karhunen-Loève分解Galerkin方法
dam settlementnon-deterministic analysisinterval finite element methodKarhunen-Loève decompositionGalerkin method
《水力发电学报》 2024 (005)
103-114 / 12
国家重点研发计划(2023YFC3011401);清华大学水圈科学与水利工程全国重点实验室(sklhse-2023-D-01);国家自然科学基金项目(52108372)
评论