| 注册

自适应密度峰值聚类算法

张强 周水生 张颖

西安电子科技大学学报(自然科学版)2024,Vol.51Issue(2):170-181,12.
西安电子科技大学学报(自然科学版)2024,Vol.51Issue(2):170-181,12.DOI:10.19665/j.issn1001-2400.20230604

自适应密度峰值聚类算法

Adaptivedensity peak clustering algorithm

张强 1周水生 1张颖1

作者信息

  • 1. 西安电子科技大学 数学与统计学院,陕西 西安 710071
  • 折叠

摘要

Abstract

Density Peak Clustering(DPC)is widely used in many fields because of its simplicity and high efficiency.However,it has two disadvantages:① It is difficult to identify the real clustering center in the decision graph provided by DPC for data sets with an uneven cluster density and imbalance;② There exists a"chain effect"where a misallocation of the points with the highest density in a region will result in all points within the region pointing to the same false cluster.In view of these two deficiencies,a new concept of Natural Neighbor(NaN)is introduced,and a density peak clustering algorithm based on the natural neighbor(DPC-NaN)is proposed which uses the new natural neighborhood density to identify the noise points,selects the initial preclustering center point,and allocates the non-noise points according to the density peak method to get the preclustering.By determining the boundary points and merging radius of the preclustering,the results of the preclustering can be adaptively merged into the final clustering.The proposed algorithm eliminates the need for manual parameter presetting and alleviates the problem of"chain effect".Experimental results show that compared with the correlation clustering algorithm,the proposed algorithm can obtain better clustering results on typical data sets and perform well in image segmentation.

关键词

聚类/密度峰值聚类/自然邻域/图像分割

Key words

clustering/density peak clustering/natural neighbor/image segmentation

分类

信息技术与安全科学

引用本文复制引用

张强,周水生,张颖..自适应密度峰值聚类算法[J].西安电子科技大学学报(自然科学版),2024,51(2):170-181,12.

基金项目

国家自然科学基金(61772020) (61772020)

西安电子科技大学学报(自然科学版)

OA北大核心CSTPCD

1001-2400

访问量0
|
下载量0
段落导航相关论文