| 注册
首页|期刊导航|通信学报|面向异构环境的物联网入侵检测方法

面向异构环境的物联网入侵检测方法

刘静 慕泽林 赖英旭

通信学报2024,Vol.45Issue(4):114-127,14.
通信学报2024,Vol.45Issue(4):114-127,14.DOI:10.11959/j.issn.1000-436x.2024087

面向异构环境的物联网入侵检测方法

Intrusion detection method for IoT in heterogeneous environment

刘静 1慕泽林 2赖英旭1

作者信息

  • 1. 北京工业大学信息学部,北京 100124||智能感知与自主控制教育部工程研究中心,北京 100124
  • 2. 北京工业大学信息学部,北京 100124
  • 折叠

摘要

Abstract

In order to address the issue of inadequate training efficiency and subpar model performance encountered by In-ternet of things(IoT)devices when dealing with resource constraints and non-independent and identically distributed(Non-IID)data,a novel personalized pruning federated learning frame work for IoT intrusion detection was put forth.Ini-tially,a channel importance scoring-based structured pruning strategy was proposed,facilitating the generation of sub-models to be disseminated to resource-limited clients,thereby harmonizing model accuracy and complexity.Subsequently,an innovative heterogeneous model aggregation algorithm was introduced,utilizing similarity-weighted coefficients for channel averaging,thereby effectively mitigating the adverse effects of Non-IID data during the model aggregation pro-cess.Ultimately,experimental results derived from the network intrusion dataset BoT-IoT substantiate that,relative to ex-isting methods,the proposed method notably curtails the time expenditure of resource-constrained clients,and improves processing speed by 20.82%,while enhancing the accuracy of intrusion detection by 0.86%in Non-IID conditions.

关键词

联邦学习/入侵检测/模型剪枝/非独立同分布

Key words

federated learning/intrusion detection/model pruning/Non-IID

分类

信息技术与安全科学

引用本文复制引用

刘静,慕泽林,赖英旭..面向异构环境的物联网入侵检测方法[J].通信学报,2024,45(4):114-127,14.

基金项目

国家自然科学基金资助项目(No.62372017)The National Natural Science Foundation of China(No.62372017) (No.62372017)

通信学报

OA北大核心CSTPCD

1000-436X

访问量0
|
下载量0
段落导航相关论文