|国家科技期刊平台
首页|期刊导航|深圳大学学报(理工版)|基于动态步长交替方向乘子法正则化极限学习机

基于动态步长交替方向乘子法正则化极限学习机OA北大核心CSTPCD

Regularized extreme learning machine based on variable step alternating direction method of multipliers

中文摘要英文摘要

为解决交替方向乘子法(alternating direction method of multipliers,ADMM)正则化极限学习机(regularized extreme learning machine,RELM)迭代收敛速度慢和迭代后期误差衰减停滞的问题,提出一种基于动态步长ADMM的正则化极限学习机,记为VAR-ADMM-RELM.该算法在ADMM算法的基础上采用动态衰减步长进行迭代,并同时使用L1和L2正则化对模型复杂度进行约束,解得具有稀疏性和鲁棒性的极限学习机输出权重.在UCI和MedMNIST数据集中对VAR-ADMM-RELM、极限学习机(extreme learning machine,ELM)、正则化极限学习机(regularized ELM,RELM)和基于ADMM的L1正则化ELM(ADMM-RELM)进行拟合、分类和回归对比实验.结果表明,VAR-ADMM-RELM算法的平均分类准确率和平均回归预测精度分别比ELM算法提升了1.94%和2.49%,较标准ADMM算法可以取得3~5倍的速度提升,且对异常值干扰具有更好的鲁棒性和泛化能力,在高维度多样本的场景下建模效率逼近标准极限学习机.该方法有效提升了ADMM算法的收敛速度,取得了比主流ELM算法更加优秀的性能表现.

To address the deficiency of slow convergence rate and stagnation of error decay during later iteration of alternating direction method of multipliers(ADMM)for regularized extreme learning machine(RELM),we propose a dynamic step size ADMM-based RELM algorithm denoted as VAR-ADMM-RELM.This method iterates with dynamically decaying step sizes based on the ADMM algorithm and simultaneously constrains the model complexity using both L1 and L2 regularization,such that the calculated output weight of ELM exhibited greater sparsity and robustness.We conduct fitting,classification,and regression comparative experiments with ELM,RELM,and ADMM-based L1 regularized ELM(ADMM-RELM)on UCI and MedMNIST datasets.The results show that VAR-ADMM-RELM improves the average classification accuracy and average regression prediction by 1.94%and 2.49%,respectively,compared to ELM.It achieves a speedup of 3 to 5 times compared to the standard ADMM algorithm and exhibits better robustness and generalization capabilities against outliers.Furthermore,it approaches the modeling efficiency of standard ELM in high-dimensional multi-sample scenarios.The proposed algorithm effectively enhances the convergence rate of the ADMM algorithm and achieves superior performance compared to mainstream ELM algorithms.

卢辉煌;邹伟东;李钰祥

北京理工大学自动化学院,北京 100081

计算机与自动化

人工智能机器学习极限学习机交替方向乘子法正则化动态衰减

machine learningextreme learning machinealternating direction method of multipliersregularizationdynamic decay

《深圳大学学报(理工版)》 2024 (003)

264-273 / 10

National Natural Science Foundation of China(61906015);Natural Science Foundation of Beijing(L201004) 国家自然科学基金资助项目(61906015);北京市自然科学基金资助项目(L201004)

10.3724/SP.J.1249.2024.03264

评论