|国家科技期刊平台
首页|期刊导航|深圳大学学报(理工版)|基于盈余公告漂移的LGBM多因子量化策略

基于盈余公告漂移的LGBM多因子量化策略OA北大核心CSTPCD

Multi-factor quantification strategy of LGBM based on post-earnings announcement drift

中文摘要英文摘要

在资本市场波动加剧的时代,挖掘有效因子与市场信息,构建合适的投资组合策略,可以实现对风险的控制和获取稳定且持续的超额收益率.选取2018-2022年第1季度中国沪深两市A股上市股票的业绩报告作为研究对象,以公司盈余公告后的1~12周作为时间窗口,通过研究盈余公告后的股价漂移(post-earnings-announcement drift,PEAD)选取市场异象的代理变量预期外盈余因子与其他5个相关市场异象因子,并使用信息系数(information coefficient,IC)、信息比率(information ratio,IR)和双重排序法进行有效因子的筛选和检验.考虑到本次量化选股是低数据量、低频次、特征值高有效性的分类任务,采用基于轻量梯度提升树的多因子量化策略构建投资组合预测股票的收益率,并与传统量化策略(简单打分法、基于预期外盈余的单因子模型、IC值加权的多因子选股模型)、基于其他机器学习模型(支持向量回归(support vector regression,SVR)、人工神经网络(artificial neural network,ANN)与分布式梯度增强(extreme gradient boosting,XGBoost))的量化策略进行对比.实证结果表明,在基于A股市场第1季度PEAD效应的股票超额收益率预测中,轻量级梯度提升机(light gradient boosting machine,LGBM)机器学习多因子量化策略构建的投资组合在多空组合中实现的年均收益率达到21.633%,超过基准年化收益率20.184%.LGBM多因子量化策略构建的投资组合在A股市场表现优异,较其他量化策略有显著提升且更为稳定,可更好地控制组合风险并获取更高的超额收益.

In the era of intensified volatility of domestic and international capital markets,exploring effective factors and market information to construct appropriate investment portfolio strategies is of great significance to control risks and obtain stable and sustainable excess returns.In this study we select the performance reports of A-share listed stocks from the first quarter of 2018 to 2022 as research objects.Taking 1 to 12 weeks after the company's earnings announcement as the time window,we examine the post-earnings-announcement drift(PEAD)of stock prices,selecting the expected excess earnings factor,a proxy variable of market anomaly,and other 5 related market anomaly factors.The effective factors are screened and tested by information coefficient(IC),information ratio(IR)and double sorting methods.Considering that the quantitative stock selection is a classification task with low data volume,low frequency and high validity of eigenvalues,a multi-factor quantitative strategy based on a lightweight gradient boosting tree is used to construct a portfolio to predict stock returns.This approach is compared with traditional quantitative strategies(simple scoring method,single factor model based on expected surplus,IC value weighted multi-factor stock selection model)and quantitative strategies based on other machine learning models such as support vector regression(SVR),artificial neural network(ANN)and extreme gradient boosting(XGBoost).Empirical results show that in forecasting stock excess returns based on the PEAD effect in the A-share market,the portfolio constructed by the light gradient boosting machine(LGBM)multi-factor quantitative strategy achieves an average annual return of 21.633%in the long-short combination portfolio,exceeding the benchmark annualized return of 20.184%.The comprehensive analysis of various indicators reflect that the investment portfolio constructed by LGBM multi-factor quantitative strategy has excellent performance in the A-share market and more show significant improvement compared to other quantitative strategies while maintaining stability,which can better control portfolio risks and achieve higher excess returns.

陈怡君;李欣雨;王潇逸;惠永昌

西安航空学院图书馆,陕西西安 710077西安交通大学数学与统计学院,陕西西安 710049中国平安财产保险股份有限公司海南分公司,海南海口 570100

计算机与自动化

数字经济量化投资多因子选股轻量梯度提升树盈余公告后漂移异象因子

digibal economyquantitative investmentmulti-factor stock selectionlightweight gradient lifting treepost-earnings-announcement driftanomaly factor

《深圳大学学报(理工版)》 2024 (003)

313-322 / 10

National Social Science Foundation of China(23BTJ057) 国家社会科学基金资助项目(23BTJ057)

10.3724/SP.J.1249.2024.03313

评论