| 注册
首页|期刊导航|太赫兹科学与电子信息学报|太赫兹光谱结合机器学习的甜味剂检测

太赫兹光谱结合机器学习的甜味剂检测

钟芸襄 张然 熊子仪 邹斌 杨玉平

太赫兹科学与电子信息学报2024,Vol.22Issue(4):385-393,9.
太赫兹科学与电子信息学报2024,Vol.22Issue(4):385-393,9.DOI:10.11805/TKYDA2023284

太赫兹光谱结合机器学习的甜味剂检测

THz spectroscopic detection of sweeteners based on machine learning algorithms

钟芸襄 1张然 1熊子仪 1邹斌 2杨玉平2

作者信息

  • 1. 中央民族大学理学院,北京 100081
  • 2. 中央民族大学理学院,北京 100081||中央民族大学光子系统工程软件教育部工程研究中心,北京 100081
  • 折叠

摘要

Abstract

Three artificial sweeteners,sucralose,erythritol and xylitol,are qualitatively and quantitatively studied based on Terahertz time-domain spectroscopy combined with machine learning algorithms and optimization algorithms.The results show that the Sparrow Search Algorithm-Support Vector Machines/Support Vector Regression(SSA-SVM/SVR)model is optimal for qualitative and quantitative analysis of the mixture.The accuracy of classification prediction is up to 95.56%,and the optimal regression coefficient for quantitative regression prediction is 0.999 8,so that a high-precision classification and quantitative analysis of three sweetener-flour mixtures is achieved.This provides an effective and reliable method for the rapid detection of artificial sweeteners.

关键词

太赫兹/甜味剂/机器学习/优化算法

Key words

terahertz/sweeteners/machine learning/optimization algorithms

分类

数理科学

引用本文复制引用

钟芸襄,张然,熊子仪,邹斌,杨玉平..太赫兹光谱结合机器学习的甜味剂检测[J].太赫兹科学与电子信息学报,2024,22(4):385-393,9.

基金项目

国家自然科学基金资助项目(62075248) (62075248)

国家重点基础研究发展计划资助项目(2020YFB2009303 ()

2017YFB00405402) ()

国家外国专家资助项目(G2022184001L) (G2022184001L)

太赫兹科学与电子信息学报

OACSTPCD

2095-4980

访问量0
|
下载量0
段落导航相关论文