| 注册
首页|期刊导航|中国医疗设备|基于U-Net融合Transformer的肺结节分割方法研究

基于U-Net融合Transformer的肺结节分割方法研究

李晓东 丁鹏

中国医疗设备2024,Vol.39Issue(5):31-36,98,7.
中国医疗设备2024,Vol.39Issue(5):31-36,98,7.DOI:10.3969/j.issn.1674-1633.2024.05.006

基于U-Net融合Transformer的肺结节分割方法研究

Research on Pulmonary Nodule Segmentation Method Based on U-Net Combined with Transformer

李晓东 1丁鹏2

作者信息

  • 1. 山东中医药大学智能与信息工程学院,山东 济南 250355
  • 2. 山东中医药大学第二附属医院 后勤党总支,山东 济南 250001
  • 折叠

摘要

Abstract

Objective To propose a pulmonary nodule segmentation model to realize pulmonary nodule segmentation.Methods The encoder,hole convolution and Swin Transformer module were added to the U-Net neural network,and a model combining hole convolution,encoder and attention mechanism was proposed,and the performance of the model was verified on LUNA16 public data set.Results The accuracy(ACC),specificity(SP),intersection over union(IOU)and Dice similarity coefficient(DSC)of the segmentation results of this model on LUNA16 public dataset were 0.9651,0.9572,0.8354 and 0.8971,respectively.Conclusion The segmentation model has an excellent performance in ACC,SP,IOU and DSC,can assist doctors to diagnose,and has certain reference value in clinical pulmonary nodule segmentation.

关键词

肺结节/肺结节分割/U-Net神经网络/Swin Transformer模块

Key words

pulmonary nodule/pulmonary nodule segmentation/U-Net neural network/Swim Transformer module

分类

信息技术与安全科学

引用本文复制引用

李晓东,丁鹏..基于U-Net融合Transformer的肺结节分割方法研究[J].中国医疗设备,2024,39(5):31-36,98,7.

中国医疗设备

OACSTPCD

1674-1633

访问量0
|
下载量0
段落导航相关论文