| 注册
首页|期刊导航|China Geology|Extensive identification of landslide boundaries using remote sensing images and deep learning method

Extensive identification of landslide boundaries using remote sensing images and deep learning method

Chang-dong Li Peng-fei Feng Xi-hui Jiang Shuang Zhang Jie Meng Bing-chen Li

China Geology2024,Vol.7Issue(2):P.277-290,14.
China Geology2024,Vol.7Issue(2):P.277-290,14.DOI:10.31035/cg2023148

Extensive identification of landslide boundaries using remote sensing images and deep learning method

Chang-dong Li 1Peng-fei Feng 2Xi-hui Jiang 3Shuang Zhang 4Jie Meng 3Bing-chen Li3

作者信息

  • 1. Faculty of Engineering,China University of Geoscience,Wuhan 430074,China Badong National Observation and Research Station of Geohazards,China University of Geosciences,Wuhan 430074,China
  • 2. School of Mechanical Engineering and Electronic Information,China University of Geosciences,Wuhan 430074,China
  • 3. Faculty of Engineering,China University of Geoscience,Wuhan 430074,China
  • 4. College of Geology Engineering and Geomatics,Chang’an University,Xi’an 710054,China
  • 折叠

摘要

关键词

Geohazard/Landslide boundary detection/Remote sensing image/Deep learning model/Steep slope/Large annual rainfall/Human settlements/Infrastructure/Agricultural land/Eastern Tibetan Plateau/Geological hazards survey engineering

分类

天文与地球科学

引用本文复制引用

Chang-dong Li,Peng-fei Feng,Xi-hui Jiang,Shuang Zhang,Jie Meng,Bing-chen Li..Extensive identification of landslide boundaries using remote sensing images and deep learning method[J].China Geology,2024,7(2):P.277-290,14.

基金项目

supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295) (Grant Nos.42090054,41931295)

the Natural Science Foundation of Hubei Province of China(2022CFA002)。 (2022CFA002)

China Geology

OACSTPCD

2096-5192

访问量0
|
下载量0
段落导航相关论文