| 注册
首页|期刊导航|兵工自动化|基于四叉树法和PROSAC算法改进的视觉SLAM技术

基于四叉树法和PROSAC算法改进的视觉SLAM技术

杜根 张志安

兵工自动化2024,Vol.43Issue(5):37-42,6.
兵工自动化2024,Vol.43Issue(5):37-42,6.DOI:10.7690/bgzdh.2024.05.008

基于四叉树法和PROSAC算法改进的视觉SLAM技术

Improved Visual SLAM Technology Based on Quadtree Method and PROSAC Algorithm

杜根 1张志安1

作者信息

  • 1. 南京理工大学机械工程学院,南京 210094
  • 折叠

摘要

Abstract

In order to solve the problems of random sample consensus(RANSAC),such as high number of iterations,poor real-time performance and unstable robustness in the front end of simultaneous localization and mapping(SLAM),an improved image matching algorithm based on the fusion of quadtree method and progressive sample consensus(PROSAC)algorithm is proposed.The mismatching elimination algorithm of quadtree method+PROSAC algorithm is implemented,and the improved ORB-SLAM2 algorithm is tested on EuRoC data set.The results show that compared with ORB-SLAM2 system,the proposed algorithm reduces the average absolute trajectory error by 39.28%and the relative pose error by 35.45%on Vicon Room 1 03 dataset,and has higher mapping accuracy.

关键词

四叉树编码/特征点匹配/PROSAC算法/SLAM

Key words

quadtree coding/feature point matching/PROSAC algorithm/SLAM

分类

信息技术与安全科学

引用本文复制引用

杜根,张志安..基于四叉树法和PROSAC算法改进的视觉SLAM技术[J].兵工自动化,2024,43(5):37-42,6.

兵工自动化

OA北大核心CSTPCD

1006-1576

访问量0
|
下载量0
段落导航相关论文