| 注册
首页|期刊导航|传感技术学报|视觉传感器提取面部运动特征的抑郁症检测算法研究

视觉传感器提取面部运动特征的抑郁症检测算法研究

周卫元 姚海峰 张闰哲 陈锐霆 毛科技 赵永标

传感技术学报2024,Vol.37Issue(4):665-674,10.
传感技术学报2024,Vol.37Issue(4):665-674,10.DOI:10.3969/j.issn.1004-1699.2024.04.015

视觉传感器提取面部运动特征的抑郁症检测算法研究

Research on Depression Detection Algorithm Based on Facial Motion Features Extracted by Vision Sensor

周卫元 1姚海峰 2张闰哲 3陈锐霆 4毛科技 3赵永标5

作者信息

  • 1. 浙江开放大学萧山学院,浙江 杭州 311200
  • 2. 绍兴市越城区消防救援大队,浙江 绍兴 312000
  • 3. 浙江工业大学计算机科学与技术学院,浙江 杭州 310023
  • 4. 浙江工业大学计算机科学与技术学院,浙江 杭州 310023||杭州惠嘉信息科技有限公司,浙江 杭州 311121
  • 5. 浙江工业大学之江学院,浙江 绍兴 312030
  • 折叠

摘要

Abstract

Although significant progress has been made in automatic diagnosis systems for depression,most of the work focuses on combi-ning features from multiple modalities to improve classification accuracy,which generates a lot of space-time overhead and feature synchro-nization problems.A unimodal depression detection framework based on facial expression and facial motion features is proposed.Firstly,a robust feature extraction method based on the ratio of facial landmark is proposed and it is theoretically proved that this feature has up-down,left-right translation,depth translation,rotation,and flip invariance.The features extracted based on the proposed method maintain the topological structure relationship of facial landmarks in space and maintain the temporal correlation of frames before and after facial landmarks.Then,a novel idea is provided to solve the classification task of large-unit depression videos.The final depression classification result is obtained by decomposing the depression classification task of large-unit videos into the scoring task of multiple short-sequence u-nits and then through the defined score aggregation function.On the DAIC-WOZ dataset,the proposed detection framework improves the classification performance,with an F1 score of 0.85,outperforming other current unimodal-based depression detection models.

关键词

抑郁症检测/情感计算/视频处理/面部标志点/浅层CNN

Key words

depression classification/affective computing/video processing/face landmark/shallow CNN

分类

信息技术与安全科学

引用本文复制引用

周卫元,姚海峰,张闰哲,陈锐霆,毛科技,赵永标..视觉传感器提取面部运动特征的抑郁症检测算法研究[J].传感技术学报,2024,37(4):665-674,10.

基金项目

浙江省基础公益研究计划项目(LTGG23F020002,LGG22F020014) (LTGG23F020002,LGG22F020014)

国家自然科学基金项目(62072410) (62072410)

传感技术学报

OA北大核心CSTPCD

1004-1699

访问量0
|
下载量0
段落导航相关论文