|国家科技期刊平台
首页|期刊导航|电力系统及其自动化学报|基于功率信号分析的光伏电站故障诊断方法

基于功率信号分析的光伏电站故障诊断方法OA北大核心CSTPCD

Fault Diagnosis Algorithm for PV Power Plant Based on Power Signal Analysis

中文摘要英文摘要

为提高光伏电站故障诊断精度,提出一种基于功率信号分析的光伏电站故障诊断方法.首先,用卷积神经网络结合长短记忆CNN-LSTM(convolutional neural networks-long short-term memory)模型和岭回归模型对历史发电的时序信息进行充分挖掘,再依据实际与预测发电功率之间的动态时间规整DTW(dynamic time warping)距离进行电站故障检测;其次,提出一个基于实际发电功率频域特征的故障分类指标,建立分类规则库,将电站故障分为通信故障、设备故障、限电故障,结合故障影响等效发电小时数评估电站故障程度;最后,通过算例分析验证了该算法的有效性.

To improve the fault diagnosis accuracy of a PV power plant fault,a fault diagnosis method for PV power plant based on power signal analysis is proposed.First,a convolutional neural networks-long short-term memory(CNN-LSTM)network model and a ridge regression model are used to mine the time series information about the historical power generation data,and the dynamic time warping(DTW)distance between the actual and predicted power genera-tion is selected to detect fault.Second,a fault classification index based on the frequency-domain characteristics of ac-tual power generation is put forward,and the classification rules are built to classify the power plant faults into commu-nication fault,equipment fault and power cut fault,and the fault impact equivalent power generation hours are com-bined to assess the degree of each type of fault.Finally,the analysis of an example verifies the effectiveness of the pro-posed algorithm.

郑晏;厉小润;张天文

浙江大学电气工程学院,杭州 310027浙江正泰智维能源服务有限公司,杭州 310052

动力与电气工程

故障检测故障分类光伏电站时序分析频域分析

fault detectionfault classificationPV power planttime series analysisfrequency-domain analysis

《电力系统及其自动化学报》 2024 (005)

150-158 / 9

浙江省尖兵计划资助项目(2023C01129)

10.19635/j.cnki.csu-epsa.001358

评论