人工智能驱动的复杂系统研究前沿OA北大核心CSTPCD
Advancements in Artificial Intelligence-Driven Complex Systems Research
作为一个研究对象涵盖基本物质、生命体和社会的跨学科研究领域,复杂系统的研究有助于增进对自然和社会现象的理解和预测,在解决人类面临的复杂问题中具有重要价值.这一领域的早期研究积累了海量的各类真实复杂系统数据,在此基础上发展数据密集型、人工智能方法驱动的复杂性科学研究新范式,将为复杂系统的描述、预测与知识发现提供一条全新的路径.该文对人工智能驱动的复杂系统研究进行前瞻性的综述,探讨人工智能助力下的复杂系统研究发展前沿,并分析基于人工智能方法的领域代表性工作,最后讨论复杂系统视角下人工智能理论及技术的潜在发展方向.
Spanning across disciplines with research interests in fundamental matter,life forms,and societal dynamics,the study of complex systems plays a pivotal role in deciphering and forecasting natural and social phenomena,thereby confronting intricate problems of human concern.The wealth of diverse real-world complex system data accumulated through early research has paved the way for a novel paradigm in complexity science research,which is intensively data-driven and steered by Artificial Intelligence(AI)methodologies.This innovative approach provides fresh insights into the characterization,forecasting,and knowledge extraction of complex systems.This article offers a visionary review of AI-driven studies in complex systems,highlighting the pioneering developments spearheaded by AI.It further scrutinizes exemplary works in the domain that leverage AI methodologies and concludes by contemplating the prospective evolution of AI theory and techniques under the lens of complex systems.
丁璟韬;徐丰力;孙浩;严钢;胡延庆;李勇;周涛
清华大学电子工程系,北京 100084中国人民大学高瓴人工智能学院,北京 100872同济大学物理科学与工程学院,上海 200092||同济大学上海自主智能无人系统科学中心,上海 200092南方科技大学统计与数据科学系,深圳 518055电子科技大学计算机科学与工程学院,成都 611731
计算机与自动化
复杂系统人工智能机器学习数据科学
complex systemartificial intelligencemachine learningdata science
《电子科技大学学报》 2024 (003)
455-461 / 7
国家重点研发计划(2022YFC3303102)
评论