| 注册
首页|期刊导航|光通信研究|基于CNN-CBAM的虚假数据注入攻击辨识研究

基于CNN-CBAM的虚假数据注入攻击辨识研究

周先军 王茹 刘航 金波

光通信研究Issue(3):45-51,7.
光通信研究Issue(3):45-51,7.DOI:10.13756/j.gtxyj.2024.230125

基于CNN-CBAM的虚假数据注入攻击辨识研究

Research on False Data Injection Attack Identification based on CNN-CBAM

周先军 1王茹 1刘航 1金波1

作者信息

  • 1. 湖北工业大学电气与电子工程学院,武汉 430068
  • 折叠

摘要

Abstract

[Objective]It is always difficult to timely locate the location of the network attack and achieve rapid deployment of de-fense strategies when the smart grid is attacked by the network.[Methods]In order to solve this problem,this article proposes a Convolutional Neural Network(CNN)model that integrates Convolutional Block Attention Modules(CBAM)(CNN-CBAM)to detect False Data Injection Attack(FDIA)positions.The attack identification problem of FDIA is modeled as a multi label classification problem,where CNN is used to extract spatial features of the data.The CBAM module can be directly integrated in-to the convolution operation of the CNN module,which not only focuses on important parameter information from the perspective of spatial domain,but also considers feature relationships in the channel domain,and allocates attention to the input data from two dimensions to improve the performance of the model.[Results]The performance of the proposed CNN-CBAM network FDIA position detection model is verified on Institute of Electrical and Electronics Engineers(IEEE)14 and IEEE118 node systems.The experimental results show that the FDIA position detection rates of CNN-CBAM on IEEE14 and IEEE118 node systems are 98.25%and 96.72%,respectively.[Conclusion]Compared with other methods,the CNN-CBAM network model proposed in this paper can effectively extract the spatiotemporal characteristics between data,with improved existence of FDIA.It also im-proves the accuracy of attack location identification with better robustness.

关键词

智能电网/虚假数据注入攻击/卷积注意力模块/卷积神经网络

Key words

smart grid/FDIA/CBAM/CNN

分类

信息技术与安全科学

引用本文复制引用

周先军,王茹,刘航,金波..基于CNN-CBAM的虚假数据注入攻击辨识研究[J].光通信研究,2024,(3):45-51,7.

基金项目

国家自然科学基金资助项目(61901165,61601177) (61901165,61601177)

湖北省自然科学基金资助项目(2019CFB530) (2019CFB530)

光通信研究

OA北大核心CSTPCD

1005-8788

访问量0
|
下载量0
段落导航相关论文