构建胃癌中CD8+T细胞相关预后模型并筛选治疗药物OACSTPCD
Construction of a CD8+T cell-related prognostic model in gastric cancer and therapeutic drug screening
目的:胃癌是高度异质性的恶性肿瘤,其病死率高,患者就诊时多已处于晚期且预后差.CD8+T细胞可识别和消灭肿瘤细胞,对癌症的进展有重要影响.本研究旨在构建CD8+T细胞浸润相关预后模型,为胃癌患者预后评估提供新的生物标志物及其药物治疗提供客观依据.方法:从癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库中下载371例胃癌样本的数据为训练集.从基因表达综合(Gene Expression Omnibus,GEO)数据库中下载433例胃癌样本的数据为测试集.计算训练集胃癌样本中CD8+T细胞相对含量,将样本分为CD8+T细胞高含量组和CD8+T细胞低含量组,采用Kaplan-Meier法分析和比较2组之间的生存关系;采用加权基因共表达网络(weighted gene co-expression network analysis,WGCNA)分析训练集数据,筛选出与CD8+T细胞最具相关性的基因模块;对该模块基因进行单因素Cox回归分析、最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归分析及多因素Cox回归分析筛选出与预后相关的基因,构建预后风险评分模型.应用模型计算训练集和测试集患者的风险评分并分别将患者分为高风险组和低风险组,并对模型进行内部及外部测试.应用肿瘤免疫单细胞枢纽2(tumor immune single-cell hub 2,TISCH2)数据库及人类蛋白质图谱(The Human Protein Atlas,HPA)数据库对模型基因进行验证.结合模型进行临床病理特征分析、功能富集分析、免疫相关性分析及化学治疗药物敏感性分析.结果:生存分析显示CD8+T细胞低含量组的预后更差.WGCNA分析筛选出与CD8+T细胞最具相关性的基因模块为Ebisque4.单因素Cox回归分析、LASSO逻辑回归分析及多因素Cox回归分析最终筛选出9个独立预后基因并构建预后风险评分模型.模型内部及外部测试结果均表明该模型具有较强的预测能力.TISCH2数据库验证表明模型基因在肿瘤微环境中具有不同的表达模式;HPA数据库验证表明模型基因的表达情况与预后模型较一致.临床病理特征分析表明风险评分与组织浸润深度相关;功能富集分析表明高风险组富集于分子间相互作用的通路,而低风险组则富集于代谢相关通路;免疫相关性分析表明高、低风险组之间的多个免疫细胞、免疫功能和免疫检查点均有差异;化学治疗药物敏感性分析表明高风险组对帕唑帕尼的敏感性更高,低风险组对西妥昔单抗的敏感性更高.结论:肿瘤微环境中的CD8+T细胞浸润对胃癌患者的预后有显著的影响.基于CD8+T细胞相关基因构建的预后模型具有普适性和临床适用性,对胃癌患者的药物治疗有重要的提示作用.
Objective:Gastric cancer is a highly heterogeneous malignant tumor with a high mortality rate.Patients often present at advanced stages with poor prognosis.CD8+T cells play a crucial role in recognizing and eliminating tumor cells,significantly influencing cancer progression.This study aims to construct a prognostic model related to CD8+T cell infiltration to provide new biomarkers for prognostic assessment and objective evidence for drug therapy in gastric cancer patients. Methods:Data from 371 gastric cancer samples were downloaded from The Cancer Genome Atlas(TCGA)database as the training set,and data from 433 gastric cancer samples were downloaded from The Gene Expression Omnibus(GEO)database as the test set.The relative abundance of CD8+T cells in the training set gastric cancer samples was calculated,dividing samples into high and low CD8+T cell content groups.Kaplan-Meier analysis was used to compare the survival relationship between the 2 groups.Weighted gene co-expression network analysis(WGCNA)was conducted on the training set data to identify gene modules most correlated with CD8+T cells.Unifactor Cox regression analysis,least absolute shrinkage and selection operator(LASSO)regression analysis,and multi-factor Cox regression analysis were performed to select prognosis-related genes and construct a prognostic risk score model.The model was applied to calculate risk scores for patients in both the training set and the test set,categorizing patients into high and low-risk groups,and internally and externally tested.Validation of model genes was performed using the tumor immune single-cell hub 2(TISCH2)database and The Human Protein Atlas(HPA)database.Clinicopathological feature analysis,functional enrichment analysis,immune correlation analysis,and analysis of sensitivity to chemotherapeutic drugs were conducted in conjunction with the model. Result:Survival analysis indicated a poorer prognosis in the CD8+T cell low-content group.WGCNA analysis identified the Ebisque4 gene module as most correlated with CD8+T cells.9 independent prognostic genes were selected through Univariate Cox regression analysis,LASSO Logistic regression analysis,and multivariate Cox regression analysis to construct the prognostic risk score model.Internal and external testing demonstrated strong predictive capability of the model.Validation using the TISCH2 database showed differential expression patterns of model genes in the tumor microenvironment,while validation using the HPA database showed consistency in gene expression with the prognostic model.Clinicopathological feature analysis revealed a correlation between risk score and tissue infiltration depth.Functional enrichment analysis showed enrichment of molecular interaction pathways in the high-risk group and metabolic pathways in the low-risk group.Immune correlation analysis revealed differences in immune cells,immune functions,and immune checkpoints between high and low-risk groups.Sensitivity analysis of chemotherapeutic drugs indicated higher sensitivity of the high-risk group to pazopanib,and higher sensitivity of the low-risk group to cetuximab. Conclusion:CD8+T cell infiltration in the tumor microenvironment significantly influences the prognosis of gastric cancer patients.The prognostic model based on CD8+T cell-related genes demonstrates universality and clinical applicability,providing important guidance for drug therapy in gastric cancer patients.
张立;唐旭鹏;申娟宁;李宁
山西医科大学第一临床医学院,太原 030001山西医科大学第一医院病理科,太原 030001
胃癌CD8+T细胞预后模型药物敏感性
gastric cancerCD8+T cellsprognostic modeldrug sensitivity
《临床与病理杂志》 2024 (002)
183-198 / 16
山西省基础研究计划(自由探索类)项目(202303021221210).This work was supported by the Basic Research Project of Shanxi Province(Free exploration class),China(202303021221210).
评论