|国家科技期刊平台
首页|期刊导航|临床与病理杂志|ICU产超广谱β-内酰胺酶肠杆菌血流感染诊断预测模型的构建和验证

ICU产超广谱β-内酰胺酶肠杆菌血流感染诊断预测模型的构建和验证OACSTPCD

Develpoment and validation of a diagnostic prediction model for bloodstream infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae in ICU patients

中文摘要英文摘要

目的:超广谱β-内酰胺酶肠杆菌(extended-spectrum β-lactamase-producing Enterobacteriaceae,ESBL-E)已成为重症监护室(intensive care unit,ICU)血流感染的主要致病菌之一,严重影响患者的预后.探讨ICU内ESBL-E血流感染的危险因素,构建并验证其诊断预测的模型,可为临床医生在ESBL-E的早期识别、防控提供参考和建议.方法:回顾性分析2020年1月至2022年6月济宁市第一人民医院肠杆菌科细菌血流感染病例的临床资料.将2020年1月至2021年12月收治的患者作为建模组(n=255),2022年1月至6月收治的患者作为验证组(n=51),建模组根据是否产ESBLs将患者分为产ESBLs组(n=131)和非产ESBLs组(n=124),采用多因素Logistic回归分析ESBL-E感染的危险因素,并构建其诊断预测模型,通过受试者操作特征曲线、净重新分类指数、校准曲线、C指数、Brier评分、决策曲线分析和临床影响曲线评估模型的区分度、校准度和获益率,采用Bootstrap法进行内部验证,并通过验证组数据对上述模型进行外部验证.结果:多因素危险因素分析结果显示:急性生理功能和慢性健康状况评价II(acute physiology and chronic health evaluation II,APACHE II)评分(>15)、营养风险筛查2002(nutritional risk screening 2002,NRS 2002)评分(≥3)、2个月内使用过头孢菌素、2个月内使用过喹诺酮类抗生素是ICU中ESBL-E血流感染的独立危险因素.ESBL-E血流感染诊断预测模型回归方程=-1.718+APACHE II评分(>15)×0.989+NRS 2002评分(≥3)×0.989+2个月内使用过头孢菌素×0.648+2个月内使用过喹诺酮类抗生素×0.806.该模型显示出良好的预测能力,预测建模组ESBL-E感染的曲线下面积为0.831(95%CI 0.781~0.881),敏感度为79.4%,特异度为72.6%.净重新分类指数显示该模型优于单一因素模型.Hosmer-lemeshow结果显示感染诊断预测模型的拟合优度较好(P=0.482);采用Bootstrap法重复抽样1 000次对该模型进行内部验证,校准曲线趋近于理想曲线,C指数为0.831,Brier评分为0.213.决策曲线分析显示该模型在阈值概率0.07~0.70范围内净获益率均大于0.临床影响曲线显示当阈值概率大于0.7后,预测模型判定为ESBL-E感染高风险人群与实际发生ESBL-E人群高度匹配,证实该预测模型临床有效率高.外部验证中应用该模型预测验证组ESBL-E感染的曲线下面积为0.807,敏感度为80.8%,特异度为80.0%,验证结果与实际一致性较高.结论:ICU患者病情越危重、营养不良、近期应用头孢菌素或喹诺酮类抗生素会增加ESBL-E血流感染的风险.基于APACHE II评分(>15)、NRS 2002评分(≥3)、2个月内使用过头孢菌素或喹诺酮类抗生素构建的诊断预测模型对ICU患者ESBL-E血流感染情况具有较好的预测价值.

Objective:Extended-spectrum β-lactamase-producing Enterobacteriaceae(ESBL-E)has become one of the main pathogens in bloodstream infections in intensive care units(ICU),significantly affecting patients prognosis.This study aims to explore the risk factors for ESBL-E bloodstream infections in ICU,develop,and validate a predictive model for diagnosis,providing reference and suggestions for early recognition and control of ESBL-E by clinicians. Methods:A retrospective analysis was conducted on the clinical data of Enterobacteriaceae bloodstream infection cases at Jining First People's Hospital from January 2020 to June 2022.Patients admitted from January 2020 to December 2021 served as a modeling group(n=255),and those from January to June 2022 as a validation group(n=51).Based on ESBL production,patients in the modeling group were divided into a ESBL-producing group(n=131)and a non-ESBL-producing group(n=124).Multifactorial Logistic regression analysis was used to analyze the risk factors for ESBL-E infections,and a diagnostic predictive model was developed.The model's discriminative ability,calibration,and clinical usefulness were assessed using the receiver operator characteristic(ROC)curve,net reclassification index(NRI),calibration plot,C-index,Brier score,decision curve analysis(DCA),and clinical impact curve(CIC).Internal validation was performed using Bootstrap method resampling,and the model was externally validated using data from the validation group. Results:Multifactorial Logistic regression analysis identified the following independent risk factors for ICU-acquired ESBL-E bloodstream infections:acute physiology and chronic health evaluation II(APACHE II)score(>15),nutritional risk screening 2002(NRS 2002)score(≥3),use of cephalosporins,and quinolones within the last 2 months.The regression equation for the ESBL-E infection diagnostic prediction model was-1.718+APACHE II score(>15)×0.989+NRS 2002 score(≥3)×0.989+use of cephalosporins in the past 2 months×0.648+use of quinolones in the last 2 months×0.806.The model showed good predictive ability with an area under the curve(AUC)of 0.831(95%CI 0.781 to 0.881),sensitivity of 79.4%,and specificity of 72.6%.The NRI showed that the model was superior to single-factor models.The Hosmer-lemeshow test showed good fit(P=0.482),internal validation with Bootstrap resampling 1,000 times showed the calibration curve closely approaching the ideal curve,C-index of 0.831,and Brier score of 0.213.The DCA indicated that the model provided a net benefit in the threshold probability range of 0.07 to 0.70.The CIC showed that,above a threshold probability of 0.7,the predicted high risk populations for ESBL-E infection closely matched with the actual occurrence,confirming the high clinical effectiveness of the predictive model.External validation using this model predicted ESBL-E infection in the validation group with an AUC of 0.807,sensitivity of 90.8%,and specificity of 80.0%,showing high consistency with actual outcomes. Conclusion:ICU patients with severe conditions,malnutrition,or recent use of cephalosporins or quinolones are at increased risk of ESBL-E bloodstream infections.The diagnostic prediction model based on[APACHE II score(>15),NRS 2002 score(≥3),recent use of cephalosporins or quinolones]has good predictive value for ESBL-E bloodstream infections in ICU patients.

高存亮;王丹丹;李文强;范文晋;陈标;李仁哲;曹晓花;马金娈;谢颖光

济宁市第一人民医院重症医学科,山东济宁 272002济宁市第一人民医院心内科,山东 济宁 272002济宁市第一人民医院临床医学实验中心中心实验室,山东济宁 272002济宁市第一人民医院医学检验科,山东济宁 272002

超广谱β-内酰胺酶肠杆菌血流感染危险因素预测模型

extended-spectrum β-lactamasesEnterobacteriaceaebloodstream infectionrisk factorsprediction model

《临床与病理杂志》 2024 (002)

221-229 / 9

山东省医药卫生科技发展计划项目(20203100526,2021117010481);济宁市第一人民医院启航科研项目(2021-QHM-030).This work was supported by the Health Science and Technology Development Project of Shandong Province(02003100526,2021117010481);Sailing Project,Scientific Research Foundation of Jining No.1 Peopleʾs Hospital(2021-QHM-030),China.

10.11817/j.issn.2095-6959.2024.230613

评论