| 注册
首页|期刊导航|交通信息与安全|新型混合交通流场景下交叉口信号控制和轨迹控制协同优化方法

新型混合交通流场景下交叉口信号控制和轨迹控制协同优化方法

王方凯 杨晓光 江泽浩 刘聪健

交通信息与安全2024,Vol.42Issue(1):76-83,123,9.
交通信息与安全2024,Vol.42Issue(1):76-83,123,9.DOI:10.3963/j.jssn.1674-4861.2024.01.009

新型混合交通流场景下交叉口信号控制和轨迹控制协同优化方法

Joint Optimization of Intersection Signal Control and Trajectory Control in Novel Heterogenous Traffic Flow Scenarios

王方凯 1杨晓光 1江泽浩 2刘聪健2

作者信息

  • 1. 同济大学道路与交通工程教育部重点实验室 上海 200092
  • 2. 华中科技大学土木与水利工程学院 武汉 430074
  • 折叠

摘要

Abstract

In scenarios of mixed traffic flows consisting of human-driven vehicles(HDVs)and connected and auton-omous vehicles(CAVs),existing intersection joint optimization methods place high computational demands on ei-ther centralized controllers or on-board computing units due to centralized and individual vehicle controls,respec-tively.This paper studies a joint optimization method that integrates the cell transmission model(CTM)with a bi-level programming model.This approach utilizes adjustable cell lengths to balance the computational require-ments needed for signal control and CAV trajectory optimization,thereby flexibly allocating computational resourc-es based on the capacities of central controllers and on-board computing units.The upper-level model predicts traf-fic flow states and optimizes signal control parameters by dynamically adjusting cell lengths to reduce the computa-tional load on central controllers.The lower-level model uses these traffic state predictions to globally plan CAV tra-jectories,thereby enhancing intersection throughput.To improve solution optimality and real-time response,an itera-tive optimization algorithm that combines stochastic gradient descent with a genetic algorithm is employed to avoid local optima and enhance solution efficiency.Using data from the intersection of Xian-feng Middle Road and Chun-feng South Road in Wuxi City as an example,the optimization effects under different CAV penetration rates were verified.Results show:①Compared to the baseline scenario,the proposed collaborative optimization scheme can reduce average vehicle travel time at the intersection by up to 8.09%,effectively reducing congestion propaga-tion upstream.② With CAV penetration rates of 30%,60%and 90%,the optimization percentages are 2.51%,5.08%and 7.88%respectively.③In scenarios where the inbound flow rate exceeds 3,000 pcu/h,optimal signal con-trol schemes can still be obtained within 100 seconds,supporting real-time optimization.The method can effectively improve urban traffic congestion and enhance the efficiency of intersections in novel mixed traffic flow scenarios.

关键词

交通控制/新型混合交通流/信号控制与轨迹优化/双层规划模型

Key words

traffic control/novel heterogenous traffic flow/signal control and trajectory optimization/bi-level pro-gramming model

分类

交通工程

引用本文复制引用

王方凯,杨晓光,江泽浩,刘聪健..新型混合交通流场景下交叉口信号控制和轨迹控制协同优化方法[J].交通信息与安全,2024,42(1):76-83,123,9.

基金项目

国家自然科学基金项目(52102377、52072264)、道路与交通工程教育部重点实验室(同济大学)开放基金项目(K202201)资助 (52102377、52072264)

交通信息与安全

OA北大核心CSTPCD

1674-4861

访问量0
|
下载量0
段落导航相关论文